
 

1 

 

Building a coherent ESL design and verification  

eco-system with SystemC, TLM, UVM-SystemC, and CCI 
Martin Barnasconi, NXP Semiconductors, The Netherlands (martin.barnasconi@nxp.com) 

 

Abstract—In the last decade, new system-level design and verification methodologies, language standards and class 

libraries have been developed and deployed, addressing the design and verification challenges at both system as well 

as implementation level. For system-level design, SystemC and Transaction Level Modeling (TLM) have become an 

established design approach, which is being extended with concepts for Configuration, Control and Inspection (CCI). 

For functional verification, the Universal Verification Methodology (UVM) standard allows the creation of 

configurable and reusable verification environments. As UVM is also being standardized in SystemC, new 

opportunities arise to combine all these standards and methodologies to build a coherent SystemC-centric eco-system 

for system-level design and verification. As the SystemC standard and extensions were developed independently from 

the UVM-SystemVerilog standard, some conceptual and functional differences are noticeable related to transaction-

based communication, configuration, and register interface and modeling. This paper is a first attempt to explain some 

of the differences and will give proposals how these standards could be used concurrently. These proposals are meant 

for further discussion to help in the evolution and alignment of these various standard developments, methodologies 

and their applications. 
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I.  INTRODUCTION  

The creation of SystemC-based virtual prototypes has become a well-known approach in a modern Electronic 

System Level (ESL) design and verification flow, primarily to facilitate software development and architecture 

exploration. For this purpose, concepts like transaction-level modeling (TLM) are applied and new techniques are 

proposed by the Configuration, Control and Inspection (CCI) working group [1] for the configuration of system-

level models. However, the main focus of virtual prototyping has always been to capture the design intent itself, by 

modeling the system architecture to understand the interplay between hardware and software components, and to a 

much lesser extent on the creation of a robust and reusable ESL verification environment which can be reused as 

soon as the design implementation becomes available. In December 2015, the Universal Verification Methodology 

(UVM) has been made available as class library in C++/SystemC [2], facilitating a standardized verification 

approach for stimuli creation and test bench assembly based on reusable and configurable verification components. 

One of the main objectives has become to unify and apply these different language standards and class libraries 

to build a consistent SystemC-based eco-system for system-level design and verification. This should not only 

address ESL design and verification, but should also facilitate a way to include mixed TLM and RTL design 

descriptions to support hardware/software co-verification. The main challenge is to understand, and sometimes 

overcome, the conceptual and functional differences between the transaction-based communication, configuration, 

and register interface and modeling approaches as defined by these different standards. For example, the TLM API 

defined in UVM-SystemVerilog is not fully compatible with the TLM-1 and TLM-2.0 declarations specified in the 

SystemC standard. Furthermore, the configuration mechanism in UVM differs from the configuration parameter 

approach proposed by CCI. Lastly, the lack of a standardized register API in SystemC means that there is no 

common register modeling and interface in SystemC, which makes it difficult to establish a standardized register 

backdoor mechanism as defined in UVM.  

This paper will explain some of the differences between these language standards and class libraries in terms of 

intended functionality and use model, and proposes ways to build a coherent and consistent eco-system for system-

level design and verification using SystemC, TLM, UVM-SystemC, and CCI. The paper is organized as follows: 

section II will discuss transaction-level modeling differences between SystemC and UVM. Section III will discuss 

the configuration mechanisms of UVM and CCI. Section IV will look into the register modeling, interface 

communication between UVM and SystemC. In section V all the language standards and class libraries are brought 

together, demonstrating the overall SystemC-based design and verification eco-system. 
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II. TRANSACTION LEVEL MODELING IN SYSTEMC AND UVM 

Abstraction of communication schemes, from cycle-based, signal-level communication to transaction-level 

communication, has been a well-established approach to create efficient and fast system-level models. Transaction-

level communication is standardized in SystemC (IEEE Std 1666-2011 [3]), which defines TLM-1 for message 

passing interfaces and analysis ports, and TLM-2.0 for transport interfaces, direct memory interface (DMI) and 

debug transport interface. The concept of transaction-level communication is also introduced in the UVM-

SystemVerilog standard [4]. Although the UVM-SystemVerilog standard uses similar naming for its TLM 

interfaces, called ‘TLM1’ and ‘TLM2’, some of the language constructs and semantics are quite different and some 

functionality is not available in UVM-SystemVerilog. 

The UVM-SystemVerilog standard specifies TLM1 based interfaces for communication between verification 

components. Table I shows the difference in language constructs between SystemC TLM-1 and UVM-

SystemVerilog TLM1. It shows that the main differences are in the naming of the non-blocking methods to put, get 

and peek transactions. Missing functionality in UVM-SystemVerilog TLM1 is a notification mechanism using 

methods similar to ok_to_put, ok_to_get, and ok_to_peek, which indicate that the callee becomes ready to accept 

or to return the next transaction.  

Table I. Differences between SystemC TLM-1 and UVM  (in SystemVerilog) TLM1 API 

SystemC TLM-1 API UVM TLM 1 API (SystemVerilog) 

Blocking put / get / peek interface 

void put( const T &t ) 
T get( tlm::tlm_tag<T> *t = 0 ) 

void get( T &t ) 

T peek( tlm::tlm_tag<T> *t = 0 ) 
void peek( T &t ) const 

 

task put( input T t ) 
N/A 

task get( output T t ) 

N/A 
task peek( output T t ) 

 

Non-blocking put / get / peek interface 

bool nb_put( const T &t ) 

bool nb_can_put( tlm::tlm_tag<T> *t = 0 ) const 
const sc_core::sc_event &ok_to_put( tlm_tag<T> *t = 0 ) const 

bool nb_get( T &t ) 

bool nb_can_get( tlm::tlm_tag<T> *t = 0 ) const 
const sc_core::sc_event &ok_to_get( tlm::tlm_tag<T> *t = 0 ) const 

bool nb_peek( T &t ) const 

bool nb_can_peek( tlm::tlm_tag<T> *t = 0 ) 
const sc_core::sc_event &ok_to_peek( tlm::tlm_tag<T> *t = 0 ) 

 

function bit try_put( input T t ) 

function bit can_put() 
N/A 

function bit try_get( output T t ) 

function bit can_get() 
N/A  

function bit try_peek( output T t ) 

function bit can_peek() 
N/A 

 

Transport interface 

RSP transport( const REQ& ) 

void transport( const REQ& req , RSP& rsp ) 
N/A 

 

N/A 

task transport( input REQ req , output RSP rsp ) 
function bit nb_transport( input REQ req, output RSP rsp ) 

Analysis interface 

void write( const T& ) function void write( input T t ) 

Note: T, REQ and RSP represent type parameters for the request or response transaction.  

For UVM in SystemC, the SystemC TLM-1 interface is used as foundation technology. To remain compatible 

with the UVM-SystemVerilog standard, the non-blocking put/get/peek interface methods (try_* and can_*) have 

been added as an alias for the nb_* and nb_can_* methods. Furthermore, the UVM-SystemVerilog specific TLM1 

ports, exports and implementations (‘imps’) for all blocking and non-blocking put/get/peek methods are 

implemented in UVM-SystemC by mapping them on the corresponding blocking and non-blocking put/get/peek 

TLM-1 interfaces. Not available in UVM-SystemC is the non-blocking transport method nb_transport, since this 

is not considered being part of the TLM-1 standard, see [3]. Instead, the non-blocking transport methods defined in 

TLM-2.0 should be used. No API changes were necessary for the analysis interface.  
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Besides these difference in TLM-1 language constructs, a more fundamental semantical issue has been found 

when comparing SystemC TLM-1 and UVM-SystemVerilog TLM1. As TLM-1 follows message passing 

semantics, the intention is that there should be no shared memory between caller and callee, which means that 

neither the caller nor the callee is permitted to modify the transaction object once it has been assigned by the sender. 

This effectively means that TLM-1 defines pass-by-value semantics. However, UVM-SystemVerilog follows pass-

by-reference semantics, which means that the transaction object remains accessible (and thus modifiable) by the 

caller or the callee, since not the transaction content is passed, but the reference (memory location) of the 

transaction. Although this might be required to support (late) randomization of UVM transactions, it remains 

incompatible with the SystemC TLM-1 standard. As UVM-SystemC is based on SystemC TLM-1, the message 

passing semantics strictly follow a pass-by-value regime. 

The inclusion of TLM2 interfaces in UVM serve a different purpose.  The main reason to add these interfaces 

is to facilitate communication to a SystemC-based reference model (e.g., as part of a scoreboard) or to communicate 

to a SystemC-based TLM-2.0 design under test (DUT). As such, the UVM fabric itself does not rely on TLM2 

interfaces and semantics, and one can argue why these interfaces were included in the class definition and library. 

In [5], an elaborate overview of differences between the SystemC TLM-2.0 standard and the UVM-SystemVerilog 

TLM1 API is given. UVM-SystemVerilog lacks a definition a direct memory interface, which prevents introduction 

of efficient methodologies to directly access DUT memory via a backdoor-like approach. Also there is no time 

quantum mechanism defined in UVM-SystemVerilog, which limits the use of more advanced time synchronization 

schemes for optimized temporal decoupling of communication between verification components or DUT.  

UVM-SystemVerilog only defines the TLM2 blocking and non-blocking transport interfaces, including class 

definitions for generic payload and the use of sockets. Unfortunately, these class definitions of UVM-

SystemVerilog TLM2 for generic payload and sockets are structurally different from the SystemC TLM-2.0 classes. 

Due to all these differences and functional limitations, the UVM-SystemC reference implementation, which is using 

SystemC TLM-2.0 as the foundation, did not add a compatibility layer to support the UVM-SystemVerilog TLM2 

class definitions. At this stage, it is proposed to use the SystemC TLM-2.0 API in the context of UVM-SystemC. 

Further alignment between the SystemC TLM and UVM-SystemVerilog standardization committees is encouraged 

to agree on a compatible API for SystemC TLM-2.0 and UVM TLM2. 

III. CONFIGURATION IN SYSTEMC CCI AND UVM 

The configuration of a system-level or reference model, DUT or verification environment requires additional 

methods for parameterization of variables, to modify e.g. functionality (behavior) or architecture composition in 

terms of number of IP blocks, verification components or interfaces. The main objective of SystemC CCI is to 

standardize the interface between system-level models and tools. Although a test bench environment can also be 

seen as a model, the model-tool interface standard considered by CCI was mainly to configure virtual prototypes 

for software development or architecture exploration from the simulation tool side, not the test bench. The 

configuration elements proposed by CCI are based on a parameter and broker class. The parameter class 

(cci_param) defines the relation between the parameter name and its value, for an arbitrary C++ type. Each 

parameter is registered with a broker at construction time. The broker class (cci_broker_if) is in charge of both 

parameter registration and access control in terms of visibility (e.g., public or hidden parameters) and access type 

(e.g., read-only). Since CCI is also considered as a tool interface, direct access to the parameter and broker objects 

enable more advanced tool capacities related to introspection, authoring, debug, coverage, etc. 

The UVM standard includes a configuration mechanism to enable to creation of reconfigurable verification 

environments, to make them reusable and scalable. The main concept is based on the creation of type-specific 

resource databases, where the parameter name (string) acts as a key to store and retrieve the parameter value. UVM 

supports two different flavors of configuration: a test bench hierarchy independent approach (so-called resource 

database, uvm_resource_db) and a hierarchy-dependent approach (called the configuration database, 

uvm_config_db). The latter is the promoted and commonly used approach, where also the hierarchical starting 

point (context) is stored in the database. This facilitates a basic filtering mechanism to make parameters only 
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accessible for certain areas in the test bench hierarchy. A very powerful feature of UVM is the parameter lookup 

based on a regular expressions including wildcards. 

Table II shows the main difference between the SystemC CCI and the UVM configuration capabilities. It 

summaries the requirements and features of both approaches, partly derived from [6].  

Table II. Differences between SystemC CCI and UVM (in SystemVerilog and SystemC) configuration capabilities 

Requirement / feature SystemC CCI 
UVM configuration mechanism 

(in SystemVerilog and SystemC) 

Parameter can be any data type 
Name-based parameter access 

Type-based parameter access 

Notification mechanism for parameter value change 
Support of different access types (RO, RW, etc.) 

Parameter hiding 

Parameter locking 
Elaboration-time only parameters 

Parameter look-up using regular expressions 

Parameter authoring/tracing/debug 
Storage of other parameter info (e.g., documentation) 

Precedence mechanism for parameters overrides  

Hierarchy (context) aware parameters 
 

Yes 
Yes 

No 

Yes (callback mechanism) 
Yes 

Yes 

Yes 
Yes 

No 

No (only via external tool) 
Yes 

Yes 

Yes 

Yes 
Yes 

Yes 

Yes (event-based mechanism) 
No 

Partly (via context) 

No 
No 

Yes 

Yes 
No 

Yes 

Yes 
 

 

The CCI concept of a parameter class offers additional functionality related to the encapsulation of parameters 

itself, such as parameter hiding, locking, access type, etc. The UVM configuration and resource database is, like 

the word says, more a database mechanism and does not offer features to manage individual parameters.  

Since the CCI and UVM configuration mechanisms are conceptually different, and rather complementary in 

functionality and features, the application of both techniques is proposed, targeting its specific application domain: 

CCI primarily to be used for DUT configuration, and using UVM configuration for the test and test bench 

environment. UVM-SystemC adopted the complete configuration and resource API from UVM-SystemVerilog. 

Further study is necessary to evaluate if some configuration features of UVM-SystemC can be brought into CCI 

and vice versa. 

IV. REGISTER INTERFACE IN SYSTEMC AND THE UVM REGISTER MODEL 

None of the existing SystemC standards specify a register API to model registers or memory. In practice, 

proprietary, company- or tool-specific solutions are used for the modeling of registers in TLM models. Since the 

use cases to model registers in SystemC can be different (e.g. registers for SW development, high-level synthesis, 

or verification), different types of flavors of registers are created, all with different capabilities. In [7], a register 

introspection interface standard (scireg) is proposed to support register introspection, enabling tools to seamlessly 

display and update register values. Note that this proposal does not define the register implementation itself. In [8], 

a C++ Register Modeling Framework has been developed, offering capabilities similar to the UVM (uvm_reg) and 

Specman/e (vr_ad) register libraries. 

In UVM, a register abstraction layer is introduced to create a register model representing the actual registers 

and memories in a DUT. Furthermore, it offers an interface for abstract register read/write operations, supported 

by specific register sequence and transaction classes. This register model closely follows the register layout of the 

design hierarchy, containing register bit fields, register blocks, maps, files, which form the full register map.  

Although the UVM register model represents the DUT registers, it is not (and should not be) the same register 

object for the actual DUT. This means that both the UVM verification environment as well as the system-level 

model (acting as DUT) need their own abstract register model and interface to read/write operations. To guarantee 

that the DUT register and UVM register model are fully identical, the use of a register model generator is promoted, 

where the register specification in SystemRDL or IP-XACT acts as golden reference for the register generation 

flow.  
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Furthermore, register read/write access means that both the UVM register model as well as the DUT registers 

needs to be accessed. For this, UVM offers front-door and back-door access capabilities. When using the front-

door, the DUT registers are accessed indirectly via the bus interface, where transactions are executed on the DUT 

peripherals which then read from or write to the registers. When using the back-door mechanism, the DUT registers 

are accessed directly using the UVM back-door mechanism, which bypasses the bus interface, and prevents the 

communication of transactions over the bus interface. However, to facilitate back-door access between a UVM-

SystemC based environment and a SystemC-based DUT including registers, as well as having direct access to these 

registers from the simulation platform (tool), a standardized register read/write interface or register introspection 

API in SystemC is essential. As register modeling is rather use-case and often company-specific, the adoption of a 

register introspection API is favored, since it can be added to existing register implementations, without affecting 

existing modeling and automation flows. 

V. THE SYSTEMC BASED ECO-SYSTEM 

This section describes the overall eco-system for system-level design and verification by combining SystemC, 

TLM, UVM-SystemC, and CCI language standards and class libraries, which have been described in the previous 

sections. Figure 1 gives a graphical representation of the eco-system, where the UVM-SystemC-based verification 

environment is depicted at the left side and the SystemC-based system-level model as DUT at the right side. The 

layered structure of UVM defines dedicated components for tests, test bench environment and defines universal 

verification components (UVC) to realize the actual bus or signal-level interface to the DUT. In addition to the 

hierarchical composition of the verification environment, UVM defines sequences (stimuli) for register or bus 

read/write. The communication between the verification components follows the TLM-1 put/get semantics. UVM-

SystemC monitors use TLM-1 analysis interfaces to pass the transactions received to other components in the 

verification environment, such as a coverage collector or scoreboard (not depicted). 

The UVM-SystemC configuration mechanism is used to configure the functionality or composition of the test, 

test bench, and UVC(s) and selects the sequences which are being executed. It is not meant to configure the DUT. 

For that purpose, the CCI configuration is proposed. 

In this simple example, the UVM-SystemC register model shows three registers, representing the registers of 

the bus peripheral in the DUT. For front-door access via the bus interface, the adapter translates the register R/W 

sequences into bus R/W transactions. For back-door access, a direct relation between the DUT register 

implementation and register model is specified. As explained in section IV, this requires a standardized interface 

to the register (introspection) interface in the DUT. 
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Figure 1. Design and verification eco-system using SystemC, TLM, UVM-SystemC, and CCI 
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VI. CONCLUSION AND SUMMARY 

This paper gave an overview of the available system-level design and verification methodologies, language 

standards and class libraries based on SystemC, TLM, UVM-SystemC and CCI. It presented the functionality and 

differences between these standards and class libraries related to transaction-based communication, configuration, 

and register interface and modeling. It proposed solutions how these technologies can be combined, or how they 

could be extended, to create a consistent and coherent SystemC-based eco-system for system-level design and 

verification. As a summary, the following observations and proposals have been presented: 

• Transaction level modeling in SystemC and UVM: The differences between the SystemC TLM-1 and the 

UVM TLM1 API have been resolved by introducing dedicated UVM TLM1 ports, exports, and port 

implementations in UVM-SystemC which are mapped on the SystemC TLM-1 interfaces. Unresolved 

topics are the difference in message passing semantics between SystemC TLM-1 versus UVM TLM1 and 

alignment of the SystemC TLM-2.0 and UVM TLM2 API. Alignment between the various standardization 

committees is encouraged to harmonize these TLM standards. 

• Configuration in SystemC CCI and UVM: Due to the rather complementary nature of the configuration 

mechanisms in CCI and UVM, it is proposed to apply CCI for the configuration of the system-level model 

and to use the UVM configuration database to configure the verification environment and its components. 

Further study is recommended to evaluate if some configuration features of UVM-SystemC can be brought 

into CCI and vice versa. 

• Register interface in SystemC and UVM register model: To facilitate back-door access between a UVM-

SystemC based environment and a SystemC-based DUT including registers, as well as having direct 

access to these registers from a simulation platform (tool), the adoption of a standardized register 

introspection API is recommended. It facilitates an interface to existing register implementations, without 

the need to standardize a dedicated register modeling approach. It is encouraged to use the register 

abstraction layer defined in UVM for the creation of a UVM register model for verification purposes. 

These proposals and recommendations are meant for further discussion, to help in the evolution and alignment 

of the various standard developments, methodologies and their applications. 
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