
TLM-based Virtual Platforms at Ericsson
Challenges and Experiences

Ola Dahl, Michael Lebert, Eric Frejd

Ericsson AB, Sweden

© Accellera Systems Initiative 1

› 200+ people Design Center,
Stockholm and Lund, Sweden

› Perform extensive
benchmarking and
evaluation of new and future
silicon technologies

› Evaluate and develop our
SoC architecture for many-
core

Our Department at Ericsson

System-In-Cabinet
RBS 6000 series of multi-standard base stations

System-On-Chip
Baseband, Radio, and

Control SoCs

System-On-Board
Radio Unit and Digital Unit

Our Products

Contents

• From Prototype to Product*

• Requirements and Models

• Platform Assembly

• Usage Patterns

• SW Development and Virtual Platforms

• Conclusions

© Accellera Systems Initiative 4

* Virtual platform (a.k.a. virtual prototype)

From Prototype to Product

© Accellera Systems Initiative 5

P1

2011 2016

P5P4P3P2 Pn

P3

P4

P5

#runs/day

User run stats 2016 (illustration)

P2

P1

P3 real hardware ready

Virtual platforms usage from CI runs

VP used as regression target in

production SW development and test
Prestudy, PoC

P6

P3 production SW boot

∆TTM

VP architecture

P6

Challenges

• Staffing – getting the right people onboard – from
RTL, via embedded, to OOAD and SW architecture

• User community acceptance – baseband and radio,
users in different SW layers, ASIC simulation, board
simulation, external tools interaction

• Setting the requirements right – from PoC to a more
mature platform architecture, balancing hardware
and software requirements, choosing the
appropriate model accuracy (from registers, via
functional models, to signal processing models)

© Accellera Systems Initiative 6

Experiences

• The first platform is still used – long after the
hardware is available, puts demands on our support
organization

• Model creation can (and should) be distributed – our
team has taken on the role of integrator, and we
receive models from different sources, both in-house
and external

• CD/CI is a bliss – daily builds and deliveries, well-
defined baselines for external dependencies (e.g.
target software from our users that we also run in
our own regression testing)

© Accellera Systems Initiative 7

Requirements and Models

© Accellera Systems Initiative 8

Use cases – software wants to do X

Test cases – it is important to test feature X before the HW arrives

Reference models – this is how the HW should behave

Interface specs – these are the registers

Hardware specs – this is how the hardware will work

VP timelineSoftware-driven requirements

Hardware-driven requirements * Find the best trade-off (varying over time and platform)

*

Challenges

• Where can we find information? – reading the
(changing) specs (HW and SW), (organizational)
networking, requests for information

• When are we done? – what is the use case?
functional software verification (mostly), need also
to handle new requirements (due to continuous VP
usage), sometimes reflecting also timing

• Who validates the golden reference? – some models
are used also for RTL verification, some models use
reference code (e.g. signal processing)

© Accellera Systems Initiative 9

Experiences

• HW specs are good, but SW User stories are also very
useful – finding the trade-off between hardware
specifications and software user stories

• Sometimes a register model with a selection of functional
behavior is good enough, and sometimes we need full
functionality (e.g. a complete signal processing
algorithm) – we use both kinds of models, in different
use cases

• Some models are used also in ASIC verification, others
are not – model updates must be compliant with
requirements from SW and HW organizations

© Accellera Systems Initiative 10

Platform Assembly

© Accellera Systems Initiative 11

Platform Assembly

© Accellera Systems Initiative 12

Challenges

• We need to support several platform variants –
dynamic platform configuration (and
parametrization)

• How can we formulate modeling requirements for
model makers? – modeling guidelines, distributed to
vendors, both in-house and external

• We need to put the platform together, but we also
need to interact with it (in many ways) – architecture
framework with well-defined interfaces for attaching
software debuggers and other tools, e.g. test tools
that are also used together with real hardware

© Accellera Systems Initiative 13

Experiences

• Dynamic platform building is useful – we can create
new platform variants quickly

• A custom module class and associated configuration
and control classes have helped a lot (and CCI will
make it even better) – we are active in the CCI
working group

• A common SW architecture was created, and it is still
used – this has been a fruitful investment

© Accellera Systems Initiative 14

Usage patterns

© Accellera Systems Initiative 15

OS and drivers

Hardware (real or simulated)

Middleware

App layer 1

App layer 2

App layer N

Challenge: Coordinated multi-layer Virtual platform enablement

Main customer

base

Opportunities

Challenges
• Supporting Control plane and Data plane – on time and

on budget – we often start with control plane modeling,
and add data plane models as the project proceeds

• How to best prepare for ASIC bring-up and Board bring-
up – tight interaction with software organizations, find
test cases that are important to run in a simulated
environment

• How to support SW development and integration also
after the hardware has arrived – supporting several
software layers, inter-layer dependencies (in time and in
functionality), adding VP functionality, increasing our test
coverage

© Accellera Systems Initiative 16

Experiences

• Control plane is common, but well-defined data plane
scenarios can be real game changers – it is costly to
simulate all functionality, and we have selected specific
use cases where we do full data plane simulation

• Many virtual platforms tend to stay around, also long
after hardware is available

• A virtual platform that is integrated into the SW
development flow can run and test new software, but it
can also serve as gatekeeper for deliveries (tests must
pass on the virtual platform before delivery is allowed)

© Accellera Systems Initiative 17

SW Development and Virtual Platforms

© Accellera Systems Initiative 18

Debugging scenarios may involve software as well as (the simulated)

hardware

Was it a SW crash or a VP crash?

• Who misbehaved? SW or HW (i.e. the virtual platform)

• We have – over the years – gained significant experience in debugging,

based on error reports from customers

• In many cases, we have found errors in software (and in several

situations, the software has then been updated accordingly)

SW Development and Virtual Platforms

© Accellera Systems Initiative 19

We have learned* that software that is well-written from a concurrency

perspective (e.g. do not assume that you know the relative speed of

concurrent processes, do not rely on the precise duration of an activity) –

tends to work well on the virtual platform (and, of course, on the hardware)

In this sense, the virtual platform becomes a detector of unrobust **

software
SW ROBUSTNESS TIP

Never assume

causality - instead,

ensure it

** Software that most likely will fail when run on a hardware that is (sometimes only slightly) different

* Discovered by VP team, and now communicated as design advice (from SW managers to SW

developers)

e.g.

Challenges
• Driver development is straightforward, but how can we

support higher layers in the software stack?
• My software works on hardware but not on the virtual

platform – what to do next? – we have had many
debugging scenarios where it has been difficult to see if a
symptom is due to an error in software or in the virtual
platform (or both) – and this is especially challenging if
the software works fine on real hardware

• I want to check my software performance, can I do that?
– we have a focus on functional modeling, but using time
annotation in LT models, some aspects of performance
measurements can be done

© Accellera Systems Initiative 20

Experiences
• Virtual platform developers often need to connect the dots –

between the software layers and down to the hardware –
especially when solving problems (is it a software crash or a
virtual platform crash?) – we experience this in our daily work
with debugging

• Timing-sensitive software does not run well on a virtual
platform (it may run well on one specific hardware, but not on
all hardware) – in this way, the presence of a virtual platform
encourages robustification of software, which in the end
should lead to higher software quality – we see this as an
additional selling point for a virtual platform

• Timing annotation can give indications of performance, but
cycle-accurate models and/or RTL is needed for more precise
figures

© Accellera Systems Initiative 21

Conclusions

• From prototype in 2011 to multi-department production
usage in 2016

• Following the TLM standard, active in CCI WG

• Virtual platforms for baseband and radio – approx 100K
simulator starts daily

• ASIC simulators, Board simulators

• Early start of software development – bring-up of boot
and OS approx. one year ahead of silicon

• Long-lived virtual platforms (several years after HW
arrives) – used in regular SW development CI processes

© Accellera Systems Initiative 22

Questions

© Accellera Systems Initiative 23

