

1

Catching the low hanging fruits on intel® Graphics Designs
Arbiter FV

M, Achutha KiranKumar V, Aarti Gupta

(achutha.kirankumar.v.m@intel.com) (aarti.gupta@intel.com)

Bindumadhava S S, Savitha Manojna Abhijith A Bharadwaj

(bindumadhava.ss@intel.com) (savitha.manojna@intel.com) (abhijith.a.bharadwaj@intel.com)

 Intel India Technologies Pvt Ltd, Bangalore, India.

Abstract—Any digital electronic design comprising of shared resources guarantees the presence of arbiters, which

skillfully delegates resource access. Discrepancies in the intended behavior of such components would result in

contention and starvation, which stresses the need for robust validation. The inadvertent design space growth

restricts traditional simulation methods from exploring all the scenarios that complex arbiters would present. The

dependable solution is exhaustive verification of the arbiter using Formal techniques. Formal Verification (FV) is

widely acknowledged for improving validation effectiveness. FV being a significant left shift from the norm, the hype

about the barrier to entry into formal and difficulty in coding the appurtenant set of properties is profuse.

Consequently, Intel® graphics team has taken a goal to embrace FV in most of its verification efforts. To lower the

seemingly high barrier, a ‘cookie cutter’ library set of formal verification friendly properties has been developed for

one of the low hanging areas of formal application – the Arbiters. All the arbiters in our Graphics Technology were

analyzed and the property set was developed and integrated into a GUI for ease of use. This paper summarizes the

fruitful efforts of our formal methodologies in shaping up a stronger verification environment for Intel® graphics.

Keywords—Formal, Formal Property Verification, Arbiters, Assertion, Coverage, FPV application, Library

I. INTRODUCTION

Arbiters are one of the main components in

digital electronic designs, used mainly in the

presence of shared resources to avoid

contentions and starvation by intelligently

restricting access by the contenders. It wouldn’t

be surprising to note that there wouldn’t be any

digital design without the use of arbiters. While

maximizing the utilization of the common

resources, the arbiters also help in maintaining

constant throughput and fairness in the system.

Millions of simulation cycles wouldn’t guarantee

the complete functional correctness of the

arbiter. Formal verification has proved its mettle

in this kind of arbitration schemes and has been

the most preferred choice to verify. The basis of the

formal property verification lies in defining the correct property set, which would need to specify the behavior of

the arbitration. Due to a wide variety of arbitration mechanisms available in practice, it is also challenging to

come up with a common set of properties for all. Hence a reusable property library needs to be defined where the

designer can choose a set that is applicable for their designs.

A
rb

it
e

r

Client1

Client2

Client N

.

.

.

Shared

Resources
Shared

Resources

Figure 1. Arbiter block diagram

mailto:achutha.kirankumar.v.m@intel.com
mailto:aarti.gupta@intel.com
mailto:bindumadhava.ss@intel.com
mailto:savitha.manojna@intel.com
mailto:abhijith.a.bharadwaj@intel.com

2

II. APPLICATION

The Intel team recognized a plethora of arbitration schemes while analyzing a couple of hundreds of arbiters

in Intel® Graphics Technology (GT). Regardless of the schemes and their complexity, some properties were

found to be consistent across, with scheme pertinent properties differentiating the designs. This knowledge

allowed the property set being developed to be contrasted into generic and arbitration specific properties. Along

with the generic properties, targeted properties to exhaustively verify some ubiquitous arbitration schemes i.e.

round robin based and priority based arbitration schemes were also included.

Another issue to be considered is when an arbiter is carved out from an environment to be solely verified,

there would be a need of certain tie-offs to simulate the environment. The environment would certainly differ

with every arbiter, but here too some generic tie-offs were identified, such as generic expectations about the client

behavior. These were also added to the library.

A well-established fact in any formal verification environment is the importance given to cover points. Over

and above these properties (assumptions and assertions), certain set of covers were added to the library. These

covers were strategically developed to toggle a significant chunk of the design being verified.

There has been a similar effort that went during OVL timeframe, which is not completely formally

friendly. We explored our methodology and as a mark of completion, we embarked on looking at alternative

options and found out the OVL library set, the properties that were defined for a similar purpose.

This effort enabled the team to strike gold with a ‘cookie cutter’ set of properties resulting in an

exhaustive arbiter property library. The designers would be given freedom over choosing the best set of

properties germane to their verification plan. The verification library comprises of the following list of

properties:

Table 1. Arbiter library properties

Arbiter library properties

Sl.no Name Description

Generic assertions

1 ASSERT_ONE_REQ_GNT When there is only one request, it should

be provided with a grant

2 ASSERT_GNT_ONLY_ON_REQ There should be a grant only if the

corresponding request has been placed

3 ASSERT_ONE_GNT_PER_REQ There should be only one grant issued per

client

4 ASSERT_ONE_GNT_AT_A_TIME Only one grant is given at any point of

time, even when there are multiple

requests

5 ASSERT_GNT_PRESERVED_TILL_DATA_XFER Grant preservation till data transfer

6 ASSERT_LIVENESS Liveness Check: For each request, a grant

must be eventually received

Multiple output ports arbiter properties
7 ASSERT_ONLY_ONE_GNT_PER_CLIENT_ACROSS_PORTS There should be only one grant per client

across all output ports

8 ASSERT_GNT_ON_ALL_PORTS If there are more requests than the number

of grant ports, all ports should have a grant

Round Robin Properties
1 ASSERT_RR_GNT_WITHIN_N_CYCLES Grant should be provided within N cycles

2 ASSERT_RR_FAIRNESS Round Robin Fairness Check

3 ASSERT_RR_ARBITRATION Round robin arbitration grant check

 Priority Arbiter Properties

1 ASSERT_PRI_ARBITRATION Higher priority client should always get

the grant

2 ASSERT_PRI_REQ_GNT If there are no requests of priority higher

3

than the current client, the grant should be

provided to the current client

Constraints/assumptions

1 ASSUME_REQ_VALID_TILL_GNT Request needs to stay high till it is

acknowledged with a grant.

2 ASSUME_ARBPARAMS_VALID_TILL_GNT Any arbitration parameter that has to be

valid till grant can be used here

3 ASSUME_NO_REQ_ON_HOLD There should be no request when hold is

high

4

ASSUME_WINNER_AS_PREV_CYCLE_GNT

This property is useful for a round robin

arbiter designed reusing priority arbiter

design and needs input from another

module indicating the last winner.

 Covers

1 COVER_INPUT_REQUESTS Cover for different number of input

requests

2 COVER_EACH_REQUEST_TOGGLES Cover to check each input is toggling

3 COVER_EACH_GNT_SEEN Cover to check each output is toggling

III. ENHANCING THE USAGE

The visibility of the library developed

was then enhanced by integrating it into a

GUI. The users now would only have to

select the required property and feed in the

necessary information such as the signals

on which the properties would act. The

properties chosen would be added to a

separate file which would be bound to the

design. The GUI was given abilities to, at

the click of a button, initiate the formal

verification setup, automatic addition of

the properties selected and binding to the

design, all of which would be run in the

back-ground.

The GUI road was taken in order to

achieve two important things. Firstly,

automating the property addition reduces

syntactical and contextual errors. The GUI

would present each property chosen with a

succinct description, avoiding the mishap

of faultily choosing a property.

Secondly, the GUI would make the

initial stages of a formal environment

setup more approachable to beginners, while giving a clear sense of direction on initiating a formal environment

set up for any future projects.

Figure 2. GUI Design Select Page

4

Figure 3. GUI Arbiter Library property selection

The GUI was also made generic enough to enable the user to code any required custom property. To achieve

this, the user could go through the manual

property tab and code the assertions by

choosing the relevant expressions from the

dropdown lists. This act helped the

designers to define their own properties,

both assumptions and assertions, while the

syntax hurdles were easily avoided. Even

with the Arbiter library in place, issues

with the regular usage of the assertion

library were seen as the designers were not

initially aware of the full potential of the

library set and its ease of usage. Being able

to write the property solo raised the

comfort level of the designers, as they

could define their own assertions, but they

would face the problem of wrong syntax.

The GUI solved all those issues by

providing the correct syntax and eased the

property coding and lowered the barrier to

entry to formal property verification.

Figure 4. Manual Property Entry

5

The arbiter library was also needed to be applicable to arbiters with data-paths. The complexity of a data-path

intense logic is predominantly due to the presence of data-

processing components like synchronous/asynchronous

FIFOs, arbiters, serial to parallel converters and so forth.

The validation data-space for such compute intensive

blocks would be humongous. Formal scoreboards are

optimized to address these convergence issues better than

the traditional FPV approach. In lieu of these requirements,

with the standard property set, support for scoreboard

addition to validate data consistency was also added.

Data integrity checks for buses have been optimized by

exploiting its inherent symmetry. Ideally, in the formal

environment, a free variable used as an index would cover

the entire width of the bus. For buses of large widths, this

range can be split into smaller, more manageable chunks

for swift convergence. The GUI script has a provision to

automatically create these ranges and define a free variable

for bit selection.

IV. RESULTS

The productiveness of the Arbiter library can be

evaluated by examining two categories; Effectiveness in

catching both shallow and deep bugs and design space

coverage. The evaluation of both criterion are as follows.

A. Bug catching effectiveness

Using the library of assertions, the team was able to

catch both shallow bugs and deep corner cases fairly

quickly. Two scenarios are presented here, one in which a

shallow bug is caught and another which shows a much

deeper bug being caught.

The arbiter under consideration has 3 requestors; Req1, Req2 and Req3. The requestors would be granted

across 2 ports, only when the ports were available. Req1 would get a grant on port1 only, when p1 is available.

Req3 would get a grant on port2 only, when port 2 is available. Req2 could get grant on either port1 or port2, on

round robin basis. And on the top, there was a round robin scheme present in between Req1, Req2 and Req3.

Scenario 1: In this scenario, the failure is as follows.

 First, only Req1

comes high. It is

granted immediately

in porta, as shown by

Gnt_req1_porta.

 In the next cycle,

Req2 and Req3

comes high. On

round robin basis,

Req2 is granted in

Figure 5. Scoreboards on Arbiter

Figure 6. 3:2 Round Robin Arbiter

Figure7. Failure Scenario1 1

6

porta, as indicated by Gnt_req2_porta.

 In the next cycle, both Req2 and Req1 are asserted, while Req3 is de-asserted. Now, a fair round robin

arbiter would have granted Req1, but Req2 is granted, as shown by Gnt_req2_porta. This is a valid

failure.

Scenario 2:

This is a much more difficult scenario which requires one to delve much deeper into the design. This is a

proper definition for ‘corner case scenario’, which is next to impossible for DV to catch.

Figure 8. Failure waveform 2

The scenario was as follows:

 First few requests are serviced such that output FIFO gets full and both output ports become unavailable.

 After both ports become unavailable, all 3 clients assert request, and these requests are high continuously

 Output ports (port a & port b) start becoming available alternately (depending on output FIFO read

conditions)

 Whenever porta becomes available, arbiter is giving grant to Req2 and whenever port b becomes

available, arbiter gives grant to Req3. Req1 requests are totally ignored.

B. Design space coverage

The effectiveness of a library of assertions will also depend on the code coverage. The library should be

prudently crafted in order to cover most of the code. The coverage from one arbiter to another would indubitably

differ owing to the design discongruities, but at the end of the day should be substantially high. The following

coverage data was obtained while exercising the arbiter library on 20% of the total arbiters in the GT.

0

10

20

30

40

50

60

70

0-75 75-80 80-85 85-90 90-95 100

Line coverage v/s percentage
of Arbiters examined

Percentage

0

10

20

30

40

50

0-60 60-65 65-75 75-80 80-85 85-90 90-99 100

Signal coverage v/s Percentage
of arbiters examined

Percentage

Figure 9. Coverage on Arbiters

7

The first graph shows the distribution of signal coverage obtained while exercising the Arbiter library over

20% of the total arbiters in the GT. It can be seen that the library proves itself in toggling most of the logic

present in the design. 43 percent of the total arbiters verified gave 100 percent signal coverage.

The second graph gives the distribution of line coverage result obtained from the arbiters verified using the

Arbiter library. It can be seen that total line coverage was obtained in 64% of the arbiters verified.

In most of the cases, it was seen that the arbiters gave lesser signal or line coverage due to chunks of logic in

the code that were unrelated to the arbitration scheme considered, such as hold, arbitration reset, arbitration

disable and/or DFT related signals which would be disabled/unused during the arbitration scheme verification.

V. CONCLUSION

The key take-away that the team arrived at from their experience in deploying the Arbiter library is as follows:

 The completeness guarantee offered by FV using the Arbiter library increased the overall verification

confidence.

 The cookie cutter set coupled with the graphical interface lowered the barrier of formal embrace.

 The property library was holistically complete to comprehend most of the scenarios and is constantly

augmented with new requirements posed.

 One year goal was taken to cover all Arbiters in the design through formal property verification.

 Future work involves proliferating these FV methodologies to more design units at Intel® and having a

wider presence in all the design modules to augment the existing verification.

VI. REFERENCES

[1] Achutha Kiran Kumar Madhunapantula, Aarti Gupta, and Bindumadhava Singanamalli, “RTL2RTL Formal Equivalence: Boosting the

Design Confidence”, DAC 2015.

[2] Achutha Kiran Kumar Madhunapantula, Aarti Gupta, and Bindumadhava Singanamalli, “Formal Verification in Intel® Graphics

designs”, DVCON 2015

[3] Erik Seligman, Tom Schubert, M V Achutha KiranKumar, “ Formal Verification: An Essential toolkit for the modern VLSI design”,

Elsevier Publications, 2015

