

1

SystemC extension for power specification,

simulation and verification

Mikhail Moiseev, Ilya Klotchkov, Intel Corporation, Hillsboro OR, USA

(mikhail.moiseev@intel.com, ilya.v.klotchkov@intel.com)

Kirill Gagarski, Maxim Petrov, St. Petersburg Polytechnic University, St. Petersburg, Russia

(gagarski@kspt.icc.spbstu.ru, maxim.petrov@kspt.icc.spbstu.ru)

Abstract— SystemC language is widely used to design hardware modules and whole systems on chip. Hardware

development for low power applications requires power management techniques like power gating, clock gating and

memory power control. SystemC does not support power related features that is a gap between power intentions at

architecture level and power specification implemented in RTL. We suggest SCPower extension that allows to inject

power specification into SystemC design and automatically generate UPF file. The SCPower extension provides

power aware SystemC simulation that is equivalent to RTL simulation with power specification in UPF. The

SCPower does verification of some power related rules and provides debugging API to access power element states.

Keywords—SystemC; UPF; power management; low power design

I. INTRODUCTION

High level synthesis (HLS) approach and SystemC language [1] become more and more popular for

development hardware modules and whole systems on chip. Low power hardware designs require power

management techniques like clock gating, power gating, and memory power control. These techniques are

planned at high level architecture specification and implemented at RTL in unified power format (UPF) [2].

SystemC language does not contains any features to represent power related properties that leads to several issues

in verification of low power designs.

The first issue is possible mismatch between SystemC simulation and RTL simulation with power

specification in UPF. In RTL simulation with UPF, in accordance with power management specified, some

processes may be switched off, some inputs may be isolated and have another values. In the result, difference in

the simulations may be significant.

The second issue is memory state which may be kept or reset depending on the memory power mode. There is

no special memory class in SystemC language. Memory is represented with C++ arrays, which may be mapped

into custom memory modules in the HLS tool. Because of that no memory power modes are supported in

SystemC simulation that also causes simulation mismatches.

The third problem is manual creation of the UPF file(s) using the name hierarchy from the generated RTL file.

That requires surfing through the generated RTL code, which may be difficult to read. The name hierarchy may

be changed during SystemC code modification that requires manual update of the UPF file(s). The last problem is

that power control requirements are not verified at SystemC design level. Any mistake is detected by simulation

of the generated RTL code only, that makes debugging process longer and more complicated.

To cope with all discussed problems we suggest SCPower extension for OSCI SystemC. The SCPower

extension injects power properties into SystemC designs that allows to:

 Describe power specification in SystemC design;

 Perform power-aware simulation, which is equivalent to RTL simulation with UPF;

 Automatically generate UPF file from the SystemC design code;

 Verify power related requirements to ensure correct RTL generation.

2

The rest of the paper is organized as follows. Section II considers other approaches to power specification,

simulation and verification in SystemC designs. Section III describes the SCPower primitives. Section IV shows

power-aware simulation details. In Section V we present UPF generation rules. Section VI gives some details of

SCPower implementation. The last section concludes the paper.

II. RELATED WORK

There are some works related to power management support in SystemC designs. The paper [3] proposes an

approach to describe power management specification at system level. The evolution of that paper is [4] where

the authors propose a SystemC extension defining macros and classes to specify power domains and power

modes in SystemC. The authors are trying to provide a way to specify power management processes together

with logic description, using higher than UPF level concepts.

The paper [5] proposes the PwARCH framework that allows to describe power intent in SystemC TLM using

UPF concepts such as power domain, supply net, etc. Also it provides means to describe and verify different

classes of contracts, which express properties of power and functional architecture. This framework is trying to

abstract out some UPF concepts such as power switches. In [6] the concept of the Power Intent Model is

presented which uses some terms of UPF. The power values are stored in a Power Data Model, which is related to

the Power Intent Model and to a Connectivity Model. The main focus of this work is power consumption

estimation at different model levels.

The work [7] provides a way to define PSM (Power State Machines) and DPMP (Dynamic Power

Management Policies). PSM and DPMP are modeled explicitly and are separated from application functionalities

and architectures. Binding the power model with the behavior model is performed with mapping and parameter

annotations. This work does not use UPF concepts. The work [8] proposes a high level power consumption

modeling for hardware IP’s, based on SystemC and TLM. This work also does not use UPF concepts and

proposes mixing up logic description with explicit updates to power state. The work [9] presents an approach uses

functional and timed system-level model, augmented with information about power consumption: power-state

models and data traffic models. It provides a way to perform fine and coarse power estimation and also coupled

with temperature simulator.

In [10] the authors propose a power estimation methodology for SystemC TLM. This work is mainly focused

on power consumption of SoC peripherals. It proposes an approach to augment transaction level models to

perform power estimation. The work [11] also focuses on the power consumption impact of peripheral IP

modules. The power consumption model is extracted from RTL description and used to augment higher level

functional model with power model.

The works [12] and [13] focus mainly on power estimation of components of a cycle-accurate SoC platform.

The paper [13] discusses power estimation of multiprocessor SoC’s. The paper [14] proposes to use UPF

specifications to extract power management assertions. This work uses local power intent extracted from UPF

and global power intent described in SystemVerilog. Extracted predicates are formally verified using a

verification tool. The work [15] uses UPF specification to translate it into an executable hierarchy, which is

parallel to the system design. Simulation results from the system and power designs are used to automatically

verify the SoC against its specification.

Power estimation, applied at system level of SoC, requires many efforts to consider library and black box

components power consumption, dynamic power dissipation, which depends on signal switching activity, and

others. Power estimation results, got at this level, cannot be quite precise because there are lots of optimizations

and transformations done by an HLS tool, a logic syntheses tool and other tools in the design flow. To estimate

power consumption of large designs it is important how the modules are placed and routed in the die. That

information is also absent at the system level. Therefore we have no intention to estimate power consumption of

SystemC designs.

Unlike the discussed approaches, the SCPower provides high level interface to describe low level power

features with details, required by industrial design process. On the other side, our approach prohibits to create

3

power control logic that is not feasible at the next stages of the design flow. The important part of the approach is

support of power management for vendor memory. Fine grained control of memory power consumption is “must

have” feature for low power designs.

III. POWER SPECIFICATION PRIMITIVES

The SCPower extension supports main primitives specified in the UPF standard. It includes primitives to

represent power domains, power switches, isolation strategies, power supply and logic signals. Also different

types of vendor memory with power management are supported.

A. Domain Structure

In accordance with the SCPower requirements a SystemC design should have exactly one top module. The

top module implementation should be inherited from sc_top_module instead of sc_module. An instance of

sc_top_module used to mark the module as design top for UPF generation. Also the top module registers all

other power related entities including power domains, memories and power supplies of child modules. The top

module is considered to be placed in always on domain. To perform power control over a module, the module

should be placed in a power domain.

A power domain is a collection of instances that are powered in the same way. A power domain contains one

or more module instances and may contain isolation strategies. The power domain class sc_domain may be

instantiated in the top module as well as in other modules, but nested domains are not supported. A power domain

may be switched on and off with call of the corresponding methods. Power domain switching on/off is provided

by a power switch, which is implicitly created for each domain except always on domain.

B. Isolation and Power Supply

Inputs and outputs of a module instance should be isolated if they are connected to instances from other power

domains. To provide isolation for input and output ports, sc_iso_in and sc_iso_out classes are provided. These

classes have the same interface as SystemC sc_in and sc_out respectively. Isolation value is specified with

isolation strategy class sc_isolation. Isolation strategy allows to set a specified values to a group of isolated

ports. Such a group is described as string of regular expression with glob syntax [16]. Isolation strategy may be

enabled and disabled independently of power domain switching on/off.

The last power primitive is power supply signal sc_supply_signal, which specifies voltage value. Every

power domain requires two power supply signals: power and ground. Memory modules may require more power

supply signals.

C. Memory

Memory types differ with functional interface as well as with power modes supported. We consider the

following memory types:

 Register file (RF), read/write memory with shutdown non-retention mode;

 SRAM, read/write memory with shutdown non-retention and sleep retention mode;

 ROM, read only memory with shutdown retention mode.

The memory implementation contains memory stub classes that represent the memory types. The memory

stub has the memory specific signal interface. It provides power-aware simulation equals to RTL simulation of

the memory module. After synthesis the memory stub RTL file is replaced with the memory implementation from

a vendor library.

To provide function call interface, memory transactors has been developed. The read and write memory

transactors provide simple universal memory read and write interfaces. They allow to make synchronous or

asynchronous requests and waiting for the response. The power transactor provides simple memory power control

interface. The transactor allows to switch memory on/off and also sleep on/off, if sleep mode is supported for the

memory type.

4

D. Power Primitives Example

There is a piece of top module constructor code that shows SCPower primitive instantiation.

IV. SIMULATION AND VERIFICATION

The SCPower extension is intended to support power-aware SystemC simulation and RTL simulation with

power specification in UPF file(s). In SystemC simulation power related properties of the design are provided by

SCPower extension classes. It is important that these two simulations are equivalent. The design using the

SCPower extension complies to the SystemC synthesizable subset [17] that allows to generate RTL with an HLS

tool. To comply the synthesizable subset, the SCPower has two modes: (1) Simulation mode, used for SystemC

power-aware simulation and (2) Synthesis mode, used for RTL synthesis by an HLS tool. These modes are

switched by setting __SYNTHESIS__ preprocessor constant.

A. SystemC Simulation

In SystemC simulation mode design processes can switch on and off power domains, enable and disable

isolations, control power mode of the memories via power transactors. In this mode power related properties are

taken into account and some power requirements checks are performed. When a domain is switched off, all

processes in the domain modules are stopped to avoid changing state. If an isolation strategy is enabled, its

isolated ports have the value specified in the strategy. Currently there is no control on relationship between the

isolation strategy and the domain power states. The possible errors may be detected with help of SystemC

simulation.

An example of the signal diagram for SystemC simulation is shown on Figure 1. There are domain power

control signal pwr_ctrl, set into 1 when the domain is powered on, and power acknowledge signal pwr_ack from

the domain power switch. The ready is an isolated output, which has isolation value 0. The isolation value is set

before domain is powered off (at the time when pwr_ctrl becomes 0).

explicit soc_top(const sc_module_name& name)
{
 // Register supply signals
 register_supply(vdd);
 register_supply(vdd_core);
 register_supply(vss);

 // Domain creation
 scpower::sc_domain* d = new sc_power::sc_domain("mult_dom_1", vdd, vss, "1 ns");
 register_domain(d);

 // Isolation creation, isolation value is 0
 scpower::sc_isolation* iso = new sc_power::sc_isolation("mut_iso_1", 0);
 d->register_isolation_strategy(iso);
 // SRAM module instantiation
 sram_stub = new sc_mem::sc_sram_stub<ADDR_WIDTH, DATA_WIDTH, SRAM_TRAITS>

 ("sram0", vdd, vdd_core, vss);
}

Figure 1. SystemC simulation example

5

B. RTL Simulation

In SystemC simulation the UPF file for the design is automatically generated (see section V). RTL simulation

with the generated UPF file may be performed with one of existing simulation tools which supports UPF. An

example of the signal diagram for RTL simulation is given on Figure 2. In this diagram power control signals

pwr_ctrl and pwr_ack as well as isolated output ready are the same as on Figure 1. Also the domain power state

and voltage are shown, which is provided by the simulation tool.

C. Power Debugging API

Debugging power related issues in SystemC simulation may require access power states of the SCPower

primitives. To provide that, power debugging API has been implemented, it allows to:

 Iterate over domains/memories/power supplies in the top module;

 Get domain/memory/power supply by name from the top module;

 Get domain/memory state string representation;

 Iterate over isolation strategies in the domain;

 Iterate over ports in the isolation strategy.

The code that uses the debugging API is not synthesizable, so it may be used in the testbench or may be

hidden in DUT code with #ifdef’s. Here is a piece of log which includes domain states and isolation strategies.

Figure 2. RTL simulation example

120 ns ---- power OFF Mult 0
Domain mult_domain_0:
 State: POWER_OFF
Isolation strategies:
 mult_isolations_0: enabled
Domain mult_domain_1:
 State: POWER_OFF
Isolation strategies:
 mult_isolations_1: enabled
130 ns ---- power ON Mult 0
Domain mult_domain_0:
 State: POWER_ON
Isolation strategies:
 mult_isolations_0: disabled
Domain mult_domain_1:
 State: POWER_OFF
Isolation strategies:
 mult_isolations_1: enabled

6

D. Verification of Power Related Rules

The SCPower does run-time verification of several power related rules. When a module is powered off, all its

processes must be in reset. When the domain is powered up, each module is required to be in reset by any

registered reset signal. If no reset signal is asserted for a module process, the corresponding warning is reported.

There is memory access control. A memory stub checks read/write access and raises warnings if some process

accesses powered off or sleeping memory. To detect read before write issues after memory power up, all memory

cells are filled with the special value (0xDEADBEEF). Figure 3 shows the situation where the domain is powered off

and then it is powered up without reset assertion. In this case the SCPower reports warning:

There is also some power element hierarchy and power property rules checking. The rules include:

 A domain and a memory module should have power supply connected;

 A module should be placed in one and only one power domain;

 All module ports on the domain border should be isolated ports;

 An isolated port should be registered in one and only one isolation strategy.

These rules are checked at the elaboration phase of SystemC simulation.

V. UPF GENERATION

The SCPower extension automatically generates the UPF file that contains all power features specified in the

SystemC design code. Let us discuss UPF commands generated for the SCPower primitives.

The design top module (sc_top_module instance) is represented in UPF with set_design_top command.

Always on domain is created for the top module with create_power_domain command. Supply ports and

signals are created in the always on domain for all registered sc_supply_signal instances using

create_supply_port, create_supply_net, and connect_supply_net commands. Primary supply signals are

connected to the always on domain with set_domain_supply_net command.

For every sc_domain instance a domain in UPF is created, the domain modules are added into -elements

option. The module hierarchical names are used. For each domain one power switch is created using

create_power_switch command. Logic net with the corresponding name is created with create_logic_net,

and connected to the power switch with connect_logic_net. The power switch output supply signal and ground

signal are set as the supply signals for the power domain.

Isolation strategies for all sc_isolation instances are created in UPF with set_isolation. The isolated

ports are in -elements option and the isolation value in –clamp_value option. Isolation strategies are also

created for memory instances if that is necessary.

150 ns, WARNING: No reset for domain module mult_domain_1 in power up

Figure 3. No reset for powered off domain

7

A. UPF Example

There is an example of UPF file generated by the SCPower.

VI. IMPLEMENTATION DETAILS

The SCPower is implemented as a set of C++ classes, which extends the SystemC kernel. To gather

information of the design structure and get access to the instance properties, we exploit “end of elaboration” and

“before end of elaboration” callbacks. These callbacks are called for each module in SystemC module hierarchy

from top to bottom. “End of elaboration” and “before end of elaboration” callbacks are called after the elaboration

phase is completed, that provides constructors for all SystemC and SCPower objects are called and the required

instances (e. g. power supplies or domains) are properly registered.

For sc_domain instances we exploit “before end of elaboration” callback to create the isolation strategies. In

this callback a sc_isolation instance constructor gets the list of ports for which the isolation strategy is applied.

The list of port is represented with a string, which contains elements to include and elements to exclude from the

isolation strategy. The element list string supports TCL-style glob patterns and module instance names. The

callback implementation traverses the modules hierarchy to find out sc_iso_in/sc_iso_out ports that satisfy the

elements list string. We use “end of elaboration” callback to run the UPF generation routine, because it is called

after “before end of elaboration” that provides the isolation strategies are already created.

Being an external to SystemC kernel, the SCPower has some issues. One of this issues is related with

checking reset state for modules which are powered up. For checking reset state it is necessary to have a reset

signals/ports for each process in the module, having reset event is not enough. This information is protected in

SystemC kernel and cannot be obtained via SystemC API. To cope with this issue class sc_power_module has

been added to the SCPower primitives. It should be used as a base class for SystemC modules instead of

sc_module. The sc_power_module class overrides async_reset_signal_is and reset_signal_is methods to

get reset list for the created process. Implementation of power features in SystemC kernel would provide more

convenient API as well as faster simulation.

Create domain
create_power_domain mult_dom_1 -elements {mults_1}
Create and connect power supplies
create_supply_net vdd_top -reuse -domain mult_dom_1
create_supply_net vss_top -reuse -domain mult_dom_1
create_supply_net mult_dom_s1 -domain mult_dom_1
set_domain_supply_net mult_dom_1 \
 -primary_ground_net vss_top \
 -primary_power_net mult_dom_s1
Create domain power switch
create_power_switch mult_dom_1_sw \
 -off_state {state_off !a} \
 -on_state {state_on vcc_in a} \
 -ack_delay {o 1ns} \
 -ack_port {o mult_dom_1_ack a} \
 -control_port {a mult_dom_1_ctrl} \
 -input_supply_port {vcc_in vdd_top} \
 -output_supply_port {gtdout mult_dom_s1} \
 -domain mult_dom_1
Add isolation for output port @ready
set_isolation mult_iso_1 \
 -elements {mults_1/ready} \
 -clamp_value 0 \
 -location self -isolation_sense high \
 -isolation_signal mult_iso1_en \
 -isolation_power_net vdd_top \
 -domain mult_dom_1

8

The other side of the SCPower implementation is support of an HLS tool. That requires the SCPower has to

generate UPF file with assumptions of RTL generated by the HLS tool. An HLS tool may perform some

optimization, but generally preserves the module hierarchy and intra-module signal interfaces. The important

thing is support the naming convention of the HLS tool. The names of modules, signals, ports and other instances

in the RTL should be determined from SystemC codes in unambiguous manner. So, here the SCPower depends

on the HLS tool, and that requires some adjustment the SCPower for every HLS tool. Unfortunately, no naming

convention is stated by the SystemC synthesizable subset standard. Having such rules in the standard would make

easy developing and support the SCPower and other tools.

VII. CONCLUSION

In this paper we present the SCPower extension that allows to inject power specification into synthesizable

hardware designs in SystemC language. The SCPower provides automatic generation of power specification in

UPF and supports power-aware SystemC simulation. SystemC simulation with the SCPower extension gives the

same results as RTL simulation with UPF. The SCPower meets the SystemC synthesizable standard, so a design

with the SCPower may be synthesized with an HLS tool. The SCPower has been used in the development of a

real world low power system on chip.

REFERENCES

[1] “IEEE standard systemc language reference manual,” http://standards.ieee.org/about/get/index.html#get1666.

[2] “IEEE standard for design and verification of low-power, energy-aware electronic systems,” https://standards.ieee.org/findstds/

standard/1801-2015.html.

[3] D. Macko and K. Jelemensk, “Managing digital-system power at the system level,” in AFRICON, 2013, Sept 2013, pp. 1–5.

[4] D. Macko, K. Jelemensk, and P. Cick, “Power-management specification in systemc,” in Design and Diagnostics of Electronic Circuits

Systems (DDECS), 2015 IEEE 18th International Symposium on, April 2015, pp. 259–262.

[5] O. Mbarek, A. Pegatoquet, and M. Auguin, “Using unified power format standard concepts for power-aware design and verification of

systems-onchip at transaction level,” IET Circuits, Devices Systems, vol. 6, no. 5, pp. 287–296, Sept 2012.

[6] J. Karmann and W. Ecker, “The semantic of the power intent format upf: Consistent power modeling from system level to

implementation,” in Power and Timing Modeling, Optimization and Simulation (PATMOS), 2013 23rd International Workshop on,

Sept 2013, pp. 45–50.

[7] Y. Xu, R. Rosales, B. Wang, M. Streub ¨ uhr, R. Hasholzner, C. Haubelt, and J. Teich, Architecture of Computing Systems– ARCS

2012: 25th International Conference, Munich, Germany, February 28 - March 2, 2012. Proceedings. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 37–49.

[8] H. Lebreton and P. Vivet, “Power modeling in systemc at transaction level, application to a dvfs architecture,” in Symposium on

VLSI, 2008. ISVLSI ’08. IEEE Computer Society Annual, April 2008, pp. 463–466.

[9] T. Bouhadiba, M. Moy, and F. Maraninchi, “System-level modeling of energy in tlm for early validation of power and thermal

management,” in Proceedings of the Conference on Design, Automation and Test in Europe, ser. DATE ’13. San Jose, CA, USA:

EDA Consortium, 2013, pp. 1609–1614.

[10] V. Narayanan, I. c. Lin, and N. Dhanwada, “A power estimation methodology for systemc transaction level models,” in 2005 Third

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’05), Sept 2005, pp.

142–147.

[11] N. Bansal, K. Lahiri, and A. Raghunathan, “Automatic power modeling of infrastructure ip for system-on-chip power analysis,” in

20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID’07), Jan

2007, pp. 513–520.

[12] I. Lee, H. Kim, P. Yang, S. Yoo, E.-Y. Chung, K.-M. Choi, J.-T. Kong, and S.-K. Eo, “Powervip: Soc power estimation framework at

transaction level,” in Asia and South Pacific Conference on Design Automation, 2006., Jan 2006, pp. 8-15.

[13] R. B. Atitallah, S. Niar, and J. L. Dekeyser, “Mpsoc power estimation framework at transaction level modeling,” in 2007 Internatonal

Conference on Microelectronics, Dec 2007, pp. 245–248.

[14] A. Hazra, S. Mitra, P. Dasgupta, A. Pal, D. Bagchi, and K. Guha, “Leveraging upf-extracted assertions for modeling and formal

verification of architectural power intent,” in Design Automation Conference (DAC), 2010 47th ACM/IEEE, June 2010, pp. 773–776.

[15] C. Trummer, C. M. Kirchsteiger, C. Steger, R. Wei, D. Dalton, and M. Pistauer, “Simulation-based verification of power aware

system-on-chip designs using upf ieee 1801,” in NORCHIP, 2009, Nov 2009, pp. 1–4.

[16] “Glob syntax,” http://www.tcl.tk/man/tcl8.4/TclCmd/glob.htm.

[17] “SystemC synthesizable subset version 1.4.7,” http://accellera.org/downloads/standards/systemc.

