

1

Efficient Clock Monitoring System for SoC Clock

Verification

Nam Pham Van, NXP, Munich, Germany (nam.phamvan@nxp.com)

Bernhard Braun, NXP, Munich, Germany (bernhard.braun@nxp.com)

Dirk Moeller, NXP, Munich, Germany (dirk.moeller@nxp.com)

Clemens Roettgermann, NXP, Munich, Germany (clemens.roettgermann@nxp.com)

Abstract — Clock systems belong to the most critical areas of the SoC design. It is therefore crucial to have accurate

checks in place which verify the clock architecture with its requirements and constraints already during the design

phase of a product. The presented approach demonstrates a Clock Monitor and Checker implementation which was

developed to help with clock architecture verification in RTL and Gate-Level simulations (GLS). This paper also shows

how these Monitors and Checker were used to verify functional clock requirements and clock constraints for the

different modes of the SoC.

Keywords—RTL design; RTL verification; Timing constraints; Clock monitoring; Clock verification;

I. INTRODUCTION AND MOTIVATION

Numerous causes of problems with clocks exist in today’s SoC designs. Clock frequencies and duty cycles are

required for correct protocol operation. The synthesis flow is based on clock constraints [1]. Safety architectures

run self-test operations like MBIST and LBIST during normal operations, clocks are turned off or tuned for power

reasons, etc. Due to those multiple reasons SoC test benches have to implement efficient clock monitoring and

checking. The implementation should support different requirements in order to be regarded as “efficient”.

All checks shall be on per default:

Instead of leaving it to the test case to enable a specific clock check they should be active per default in order

to determine unexpected causes of violations.

Checks shall be dynamically controllable by SoC modes:

The monitors shall support to dynamically switch them on and off based on different SoC modes such as:

functional mode, LBIST during functional operation, test-modes, availability modes etc.

Checks shall be controllable by test cases:

Test cases shall have the possibility to control the different clock checks as they sometimes violate legal

conditions e.g. by forces.

It shall be easy and quick to debug and analyze fails:

This requirement was the main driver for the decision to replace legacy clock monitors and checkers with the

new designed system as presented in this paper. We decided to implement a system in which the violating time

stamps and the related clocks could be directly viewed in the waveform without the requirement to set

breakpoints, analyze drivers of SystemVerilog (SV) events or handle debugging of dynamic classes. The

proposed system is therefore based on static SystemVerilog module scope and still provides the controllability

and flexibility as required. The “assertion fails” can directly be viewed in waveforms and tracing back of clock

sources is straightforward.

Reusability and simplified integration:

The monitors shall be easy to integrate into the testbench. Monitors and checkers shall be independent from

design and simulation tool. All checks shall have the same structure.

mailto:nam.phamvan@nxp.com
mailto:bernhard.braun@nxp.com
mailto:dirk.moeller@nxp.com
mailto:clemens.roettgermann@nxp.com

2

II. APPROACH

A. Overview

Figure 1 shows the structure of the clock verification for a System on Chip (SoC) design. The idea is to separate

the complexity of the clock verification into layers and submodules. As can be seen in Figure 1, the concept consist

three layers: the Clock Source Layer, the Clock Monitor Layer and the Checker Layer. The Clock Source Layer

represents the SoC design with all the different clock domains and clock sources. The second layer consists a

series of clock monitors that observe critical clock sources of the design. Thus, each clock source has a separated

clock monitor instance which captures the high and low phase duration of a clock and provide these information

to the third layer. The Checker Layer contains a series of Checker instances for each clock source. Base on the

information of the clock monitor and the specified clock constraints the Checker performs the check. Each

Checker instance itself consists four significant checks: min. Period Check, max. Period Check, Duty Cycle Check

and expected Period Check and can be enabled or disabled when needed. The separation into layers simplifies the

process of adding and removing new clock monitors and the corresponding checker.

Figure 1 : Clock verification overview

Clock
Source 2

Clock
Source 1

Block A

Destination
2

Destination
1

Block b

Clock Source Layer

Divider

Clock Monitor
(Clock Source 2)

Clock Monitor
(Clock Source 1)

Clock Monitor
(after Divider)

Clock Monitor
(after Block A)

Clock Monitor
(before Block A)

Clock Monitor Layer

Min. Period

Max. Period

Duty Cycle

Exp. Period

Checker
(Clock Source 1)

Min. Period

Max. Period

Duty Cycle

Checker
(before Block A)

Min. Period

Max. Period

Duty Cycle

Checker
(after Divider)

Checker Layer

Exp. Period

3

B. Clock Monitor Module

The Clock Monitor Module is an independent module, which can be used to observe a specific clock source

for verification purposes. It continuously provides the low and the high phase durations of a given clock. Each

time a low or a high phase duration is calculated, a corresponding event signal is toggled to indicate the availability

of the new data.

The Clock Monitor Module is split into two separate blocks, one each to handle either the positive or the negative

clock edge (see Figure 2). Both blocks have identical structure and functionality. Furthermore, both blocks react

on the negative edge of the reset signal.

Time Stamp Capturing

Phase Duration Calculation

Event Generation

Clock Monitor Module

Time Stamp Capturing

Phase Duration Calculation

Event Generation

Positive Clock Edge Block

Negative Clock Edge Block

clock

reset_b

low_phase_duration

high_phase_duration

low_phase_data_avail_evt

high_phase_data_avail_evt

Figure 2 : Clock Monitor Module architecture

Each time a positive or a negative clock edge occurs, a time stamp is saved. For debug purposes and calculations,

the current and the previous time stamp of each clock edge is retained (see Figure 3 and Figure 4).

tp1tp0

clock

Figure 3 : Time stamp capturing at positive clock edge

Positive clock edge time stamp:

tp0 : previous time stamp

tp1 : current time stamp

tn1tn0

clock

Figure 4 : Time stamp capturing at negative clock edge

Negative clock edge time stamp:

tn0 : previous time stamp

tn1 : current time stamp

4

The Phase Duration Calculation for a given clock is defined as follows:

 The low phase duration is the time between a negative clock edge and the directly following positive

clock edge (see Figure 5).

 The high phase duration is the time between a positive and the directly following negative clock edge

(see Figure 6).

For this implementation, the low phase duration 𝑡𝐿𝑃 is calculated with (1) and the high phase duration 𝑡𝐻𝑃 is

calculated with (2).

Low Phase
duration

tp1tn1tp0tn0

Low Phase
duration

Figure 5 : Low phase duration

𝑡𝐿𝑃 = 𝑡𝑝1 − 𝑡𝑛1 (1)

tn1

High Phase
duration

tp1tn0tp0

High Phase
duration

Figure 6 : High phase duration

𝑡𝐻𝑃 = 𝑡𝑛1 − 𝑡𝑝1 (2)

The low phase duration 𝑡𝐿𝑃 is calculated only at a rising clock edge and the high phase duration 𝑡𝐻𝑃 is calculated

only at a falling clock edge. The corresponding low or high phase data available event signal is toggled, after the

low or the high phase duration value is calculated. Therefore, the low phase data available event toggles with

every positive clock edge (blue waveform in Figure 7) and the high phase data available event toggles with every

negative clock edge (orange waveform in Figure 7). In this example (Figure 7), the phase duration does not change

because once the clock is stable, the low and high phase duration values are constant.

clock

0 5low_phase_duration

low_phase_data_
avail_evt

high_phase_data_
avail_evt

high_phase_duration 0 5

: Delta Cycle Window
Figure 7 : Phase duration data event generation

5

C. Clock Check

Figure 8 shows the connection between the Clock Monitor Module and the Check Module. The Clock Monitor

Module provides continuously the low and the high phase durations of a given clock. The input signals are

“standardized” for all Check Modules. Based on the low or high phase data available event signal the Check

Module identify new phase duration data. Beside the clock monitor signals, the Check Module has four additional

inputs. The reset and enable inputs control the status of the Check Module and allows the activation and

deactivation of the Check. The input Input X depends on the Check Module and defines the condition for the

check (see Table 1). The input Tolerance is mandatory for every Check Module and defines the accuracy of the

check.

Figure 8 : Clock Monitor and Check Module structure

Check Module Input X Assertion Condition

Exp. Period Exp. Period Min. Exp. Period < Clock Period < Max. Exp. Period

Max. Period Max. Period Clock Period < (Max. Period + (Max. Period * Tolerance))

Min. Period Min. Period Clock Period > (Min. Period - (Min. Period * Tolerance))

Duty Cycle Exp. Duty Cycle Min. Exp. Duty Cycle < Duty Cycle < Max. Exp. Duty Cycle

Table 1 : Checks dependences

Clock Period = Low Phase Duration + High Phase Duration

Min. Exp. Period = Exp. Period - (Exp. Period * Tolerance)

Max. Exp. Period = Exp. Period + (Exp. Period * Tolerance)

Duty Cycle = Low Phase Duration / Clock Period

Min. Exp. Duty Cycle = Exp. Duty Cycle - (Clock Period * Tolerance)

Max. Exp. Duty Cycle = Exp. Duty Cycle + (Clock Period * Tolerance)

Furthermore, tasks were implemented to simplify the usage of the checks. Listing 1 shows the implemented checks

as tasks and how they are called. When calling a task, parameters can be handed over to define the conditions of

the check.

testbench.xosc_checker.max_period (.enable(1), .max_period(6.000ns), .tolerance(0.001));

testbench.xosc_checker.exp_period (.enable(0), .exp_period(6.000ns), .tolerance(0.001));

testbench.xosc_checker.min_period (.enable(1), .min_period(6.000ns), .tolerance(0.001));

testbench.xosc_checker.duty_cycle (.enable(0), .exp_duty_cycle(0.5), .tolerance(0.001));

Listing 1 : Checks examples as Task

6

III. SOC VERIFICATION AND CLOCK MONITOR GENERATION

A. Verification objective

In complex SoC designs there are various clocks with different requirements and constraints. On the one hand

there are functional clock requirements like minimum/maximum frequency or requirements on the duty cycle,

which are mainly driven from application requirements (e.g. IP A must run with 80 Mhz and a 50% duty cycle

clock). On the other hand there are clock constraints for the design and the physical implementation (synthesis)

of the clock tree.

For these requirements it is crucial to check that there is no Over/Under-Testing and it needs to be ensured that

Over/Under-Constraining is avoided. Otherwise the following could go wrong:

 Under-Testing: In this case, the test cases run too slow in an RTL or GLS simulation and therefore the

maximum allowed frequencies are never achieved or tested.

 Over-Testing: The test cases run too fast in an RTL or GLS simulation and therefore the maximum

allowed frequencies are exceeded or violated.

 Under-Constraining: The corresponding clock path is too slow and therefore the required frequencies

cannot be met.

 Over-Constraining: It is more difficult to achieve the timing and additional buffers could be needed.

To ensure that none of these cases occur, it is important to verify the clock requirements and constraints thoroughly

during SoC Verification. The clock monitors and checks which were introduced in the previous chapters are used

for this Verification.

B. Clock Monitor Generation

Since there are numerous clock sources to monitor in an SoC design and to reduce the manual effort for the

clock monitor implementation in the SoC Verification testbench, the clock monitors are generated using scripts

(instead of creating them manually) based on the information from a ‘central clock database’.

The ‘central clock database’ contains all relevant clock information for the individual clock sources, such as

hierarchical path of the clocks, permitted frequencies, duty cycle, etc. and are extracted from documents (e. g.

Reference Manual, Datasheets, etc.). For each of the clock sources in the ‘central clock database’ a monitor and

the corresponding checks are generated.

C. Testbench integration and Pass/Fail criteria

The checkers are implemented globally in the SoC Verification Testbench so that they run for each test case

during regression runs. The PASS criteria is that the maximum frequency is not exceeded for all test cases, the

minimum frequency is not underrun and the maximum frequency must be reached for at least 1 test case.

Therefore, the following is checked during the regression:

 Did the Assertions really trigger?

 Did we achieve the required frequencies and were these frequencies not violated?

Only if the answer is ‘Yes’ for both cases, then the Regression is clean. If one of the answers is ‘No’ then the

following Decision Matrix (Figure 9) can be used to find out if the test cases are wrong (if under/over-testing is

done) or if the Requirements/Constraints are wrong (if under/over-constraining was done).

7

Figure 9 : Decision Matrix

All test cases, the functional checks as well as the constraints checks are getting and using the same frequencies.

Additionally, different people deliver individual test cases and checks to cover special cases. Therefore, only if

all checks PASS then all the items in Figure 10 are consistent.

Figure 10 : Pass conditions

IV. RESULT AND CONCLUSION

The paper presents a SystemVerilog clock monitoring approach. SV modules monitor and check the behavior of

several clocks (dividers). A single source 'clock database' is used as input to automatically generate and instantiate

the needed modules. The described clock monitoring strategy was successfully integrated into three projects and

has proven the reusability. Over 200 clock monitors and checks were implemented for a current project and are

per default enabled for all the test cases. The checks are controlled dynamically by SoC modes to ensure the right

clocking in the corresponding mode.

Besides, test cases are able to enable and disable the checks manually in the stimuli to verify corner cases. The

compact and clear interface, of the clock monitors and checks, makes it easy to add new instances for the testbench.

The automated clock monitors and checks generation simplify the maintenance and keep it updated with design

changes.

In all of the implementations so far, no noticeable increase of simulation time was noticed. Because of the very

low resource demands it makes it ideal to include it into the regression run. Thanks to the implementation as

modules, the debugging can be done with all available simulation tools and fails can be analyzed faster.

REFERENCES

[1] G. Limmer, D. Moeller, M. Mueller, C. Roettgermann, “Validation of Timing Constraints on RTL, Reducing Risk and Effort on Gate-

Level” NXP, submitted to DVCon Europe 2016.

