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Abstract — Clock systems belong to the most critical areas of the SoC design. It is therefore crucial to have accurate 

checks in place which verify the clock architecture with its requirements and constraints already during the design 

phase of a product. The presented approach demonstrates a Clock Monitor and Checker implementation which was 

developed to help with clock architecture verification in RTL and Gate-Level simulations (GLS). This paper also shows 

how these Monitors and Checker were used to verify functional clock requirements and clock constraints for the 

different modes of the SoC. 
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I.  INTRODUCTION AND MOTIVATION 

Numerous causes of problems with clocks exist in today’s SoC designs. Clock frequencies and duty cycles are 

required for correct protocol operation. The synthesis flow is based on clock constraints [1]. Safety architectures 

run self-test operations like MBIST and LBIST during normal operations, clocks are turned off or tuned for power 

reasons, etc. Due to those multiple reasons SoC test benches have to implement efficient clock monitoring and 

checking. The implementation should support different requirements in order to be regarded as “efficient”. 

 

All checks shall be on per default: 

Instead of leaving it to the test case to enable a specific clock check they should be active per default in order 

to determine unexpected causes of violations. 

Checks shall be dynamically controllable by SoC modes:  

The monitors shall support to dynamically switch them on and off based on different SoC modes such as: 

functional mode, LBIST during functional operation, test-modes, availability modes etc.  

Checks shall be controllable by test cases: 

Test cases shall have the possibility to control the different clock checks as they sometimes violate legal 

conditions e.g. by forces. 

It shall be easy and quick to debug and analyze fails: 

This requirement was the main driver for the decision to replace legacy clock monitors and checkers with the 

new designed system as presented in this paper. We decided to implement a system in which the violating time 

stamps and the related clocks could be directly viewed in the waveform without the requirement to set 

breakpoints, analyze drivers of SystemVerilog (SV) events or handle debugging of dynamic classes. The 

proposed system is therefore based on static SystemVerilog module scope and still provides the controllability 

and flexibility as required. The “assertion fails” can directly be viewed in waveforms and tracing back of clock 

sources is straightforward. 

Reusability and simplified integration: 

The monitors shall be easy to integrate into the testbench. Monitors and checkers shall be independent from 

design and simulation tool. All checks shall have the same structure. 
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II. APPROACH 

A. Overview 

 

Figure 1 shows the structure of the clock verification for a System on Chip (SoC) design. The idea is to separate 

the complexity of the clock verification into layers and submodules. As can be seen in Figure 1, the concept consist 

three layers: the Clock Source Layer, the Clock Monitor Layer and the Checker Layer. The Clock Source Layer 

represents the SoC design with all the different clock domains and clock sources. The second layer consists a 

series of clock monitors that observe critical clock sources of the design. Thus, each clock source has a separated 

clock monitor instance which captures the high and low phase duration of a clock and provide these information 

to the third layer. The Checker Layer contains a series of Checker instances for each clock source. Base on the 

information of the clock monitor and the specified clock constraints the Checker performs the check. Each 

Checker instance itself consists four significant checks: min. Period Check, max. Period Check, Duty Cycle Check 

and expected Period Check and can be enabled or disabled when needed. The separation into layers simplifies the 

process of adding and removing new clock monitors and the corresponding checker. 

 

    

 

Figure 1 : Clock verification overview 
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B. Clock Monitor Module 

 

The Clock Monitor Module is an independent module, which can be used to observe a specific clock source 

for verification purposes. It continuously provides the low and the high phase durations of a given clock. Each 

time a low or a high phase duration is calculated, a corresponding event signal is toggled to indicate the availability 

of the new data. 

 

The Clock Monitor Module is split into two separate blocks, one each to handle either the positive or the negative 

clock edge (see Figure 2). Both blocks have identical structure and functionality. Furthermore, both blocks react 

on the negative edge of the reset signal. 
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Figure 2 : Clock Monitor Module architecture  

 

Each time a positive or a negative clock edge occurs, a time stamp is saved. For debug purposes and calculations, 

the current and the previous time stamp of each clock edge is retained (see Figure 3 and Figure 4). 
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Figure 3 : Time stamp capturing at positive clock edge 

 

Positive clock edge time stamp: 

tp0 : previous time stamp 

tp1 : current time stamp 
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Figure 4 : Time stamp capturing at negative clock edge 

 

Negative clock edge time stamp: 

tn0 : previous time stamp 

tn1 : current time stamp 
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The Phase Duration Calculation for a given clock is defined as follows: 

 

 The low phase duration is the time between a negative clock edge and the directly following positive 

clock edge (see Figure 5).  

 The high phase duration is the time between a positive and the directly following negative clock edge 

(see Figure 6). 

 

For this implementation, the low phase duration 𝑡𝐿𝑃 is calculated with (1) and the high phase duration 𝑡𝐻𝑃 is 

calculated with (2). 
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Figure 5 : Low phase duration 

 

 

𝑡𝐿𝑃 = 𝑡𝑝1 −  𝑡𝑛1 (1) 
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Figure 6 : High phase duration 

 

 

𝑡𝐻𝑃 = 𝑡𝑛1 −  𝑡𝑝1 (2) 

 

 

The low phase duration 𝑡𝐿𝑃 is calculated only at a rising clock edge and the high phase duration 𝑡𝐻𝑃 is calculated 

only at a falling clock edge. The corresponding low or high phase data available event signal is toggled, after the 

low or the high phase duration value is calculated. Therefore, the low phase data available event toggles with 

every positive clock edge (blue waveform in Figure 7) and the high phase data available event toggles with every 

negative clock edge (orange waveform in Figure 7). In this example (Figure 7), the phase duration does not change 

because once the clock is stable, the low and high phase duration values are constant. 
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Figure 7 : Phase duration data event generation 
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C. Clock Check 

 

Figure 8 shows the connection between the Clock Monitor Module and the Check Module. The Clock Monitor 

Module provides continuously the low and the high phase durations of a given clock. The input signals are 

“standardized” for all Check Modules. Based on the low or high phase data available event signal the Check 

Module identify new phase duration data. Beside the clock monitor signals, the Check Module has four additional 

inputs. The reset and enable inputs control the status of the Check Module and allows the activation and 

deactivation of the Check. The input Input X depends on the Check Module and defines the condition for the 

check (see Table 1). The input Tolerance is mandatory for every Check Module and defines the accuracy of the 

check. 

 

 

Figure 8 : Clock Monitor and Check Module structure 

 

Check Module Input X Assertion Condition 

Exp. Period Exp. Period Min. Exp. Period < Clock Period < Max. Exp. Period 

Max. Period Max. Period Clock Period < (Max. Period + (Max. Period * Tolerance)) 

Min. Period Min. Period Clock Period > (Min. Period - (Min. Period * Tolerance)) 

Duty Cycle Exp. Duty Cycle Min. Exp. Duty Cycle < Duty Cycle < Max. Exp. Duty Cycle 

Table 1 : Checks dependences 

 
Clock Period = Low Phase Duration + High Phase Duration 

Min. Exp. Period = Exp. Period - (Exp. Period * Tolerance) 

Max. Exp. Period = Exp. Period + (Exp. Period * Tolerance) 

Duty Cycle = Low Phase Duration / Clock Period 

Min. Exp. Duty Cycle = Exp. Duty Cycle - (Clock Period * Tolerance) 

Max. Exp. Duty Cycle = Exp. Duty Cycle + (Clock Period * Tolerance) 

 

 

Furthermore, tasks were implemented to simplify the usage of the checks. Listing 1 shows the implemented checks 

as tasks and how they are called. When calling a task, parameters can be handed over to define the conditions of 

the check. 

 

 

testbench.xosc_checker.max_period (.enable(1), .max_period(6.000ns), .tolerance(0.001)); 

testbench.xosc_checker.exp_period  (.enable(0), .exp_period(6.000ns),  .tolerance(0.001)); 

testbench.xosc_checker.min_period (.enable(1), .min_period(6.000ns),  .tolerance(0.001)); 

testbench.xosc_checker.duty_cycle  (.enable(0), .exp_duty_cycle(0.5),   .tolerance(0.001)); 

 

Listing 1 : Checks examples as Task 
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III. SOC VERIFICATION AND CLOCK MONITOR GENERATION 

 

A. Verification objective 

 

In complex SoC designs there are various clocks with different requirements and constraints. On the one hand 

there are functional clock requirements like minimum/maximum frequency or requirements on the duty cycle, 

which are mainly driven from application requirements (e.g. IP A must run with 80 Mhz and a 50% duty cycle 

clock). On the other hand there are clock constraints for the design and the physical implementation (synthesis) 

of the clock tree. 

 

For these requirements it is crucial to check that there is no Over/Under-Testing and it needs to be ensured that 

Over/Under-Constraining is avoided. Otherwise the following could go wrong: 

 

 Under-Testing: In this case, the test cases run too slow in an RTL or GLS simulation and therefore the 

maximum allowed frequencies are never achieved or tested. 

 Over-Testing: The test cases run too fast in an RTL or GLS simulation and therefore the maximum 

allowed frequencies are exceeded or violated. 

 Under-Constraining: The corresponding clock path is too slow and therefore the required frequencies 

cannot be met. 

 Over-Constraining: It is more difficult to achieve the timing and additional buffers could be needed. 

 

To ensure that none of these cases occur, it is important to verify the clock requirements and constraints thoroughly 

during SoC Verification. The clock monitors and checks which were introduced in the previous chapters are used 

for this Verification. 

 

B. Clock Monitor Generation 

 

Since there are numerous clock sources to monitor in an SoC design and to reduce the manual effort for the 

clock monitor implementation in the SoC Verification testbench, the clock monitors are generated using scripts 

(instead of creating them manually) based on the information from a ‘central clock database’. 

The ‘central clock database’ contains all relevant clock information for the individual clock sources, such as 

hierarchical path of the clocks, permitted frequencies, duty cycle, etc. and are extracted from documents (e. g. 

Reference Manual, Datasheets, etc.). For each of the clock sources in the ‘central clock database’ a monitor and 

the corresponding checks are generated. 

 

C. Testbench integration and Pass/Fail criteria 

 

The checkers are implemented globally in the SoC Verification Testbench so that they run for each test case 

during regression runs. The PASS criteria is that the maximum frequency is not exceeded for all test cases, the 

minimum frequency is not underrun and the maximum frequency must be reached for at least 1 test case. 

Therefore, the following is checked during the regression: 

 

 Did the Assertions really trigger? 

 Did we achieve the required frequencies and were these frequencies not violated? 

 

Only if the answer is ‘Yes’ for both cases, then the Regression is clean. If one of the answers is ‘No’ then the 

following Decision Matrix (Figure 9) can be used to find out if the test cases are wrong (if under/over-testing is 

done) or if the Requirements/Constraints are wrong (if under/over-constraining was done). 
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Figure 9 : Decision Matrix 

 

All test cases, the functional checks as well as the constraints checks are getting and using the same frequencies. 

Additionally, different people deliver individual test cases and checks to cover special cases. Therefore, only if 

all checks PASS then all the items in Figure 10 are consistent. 

 

 

Figure 10 : Pass conditions 

 

IV. RESULT AND CONCLUSION 

The paper presents a SystemVerilog clock monitoring approach. SV modules monitor and check the behavior of 

several clocks (dividers). A single source 'clock database' is used as input to automatically generate and instantiate 

the needed modules. The described clock monitoring strategy was successfully integrated into three projects and 

has proven the reusability. Over 200 clock monitors and checks were implemented for a current project and are 

per default enabled for all the test cases. The checks are controlled dynamically by SoC modes to ensure the right 

clocking in the corresponding mode. 

Besides, test cases are able to enable and disable the checks manually in the stimuli to verify corner cases. The 

compact and clear interface, of the clock monitors and checks, makes it easy to add new instances for the testbench. 

The automated clock monitors and checks generation simplify the maintenance and keep it updated with design 

changes. 

In all of the implementations so far, no noticeable increase of simulation time was noticed. Because of the very 

low resource demands it makes it ideal to include it into the regression run. Thanks to the implementation as 

modules, the debugging can be done with all available simulation tools and fails can be analyzed faster. 
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