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Abstract—Code generation or model driven software development has always had his place within the field of 

ASIC verification due to the obvious advantages with respect to time savings, complexity reduction, less bugs/errors 

etc. Typically, model driven software development has been used for generating RTL implementation for registers, 

register documentation, self-contained register tests from abstract specifications such as IP-XACT. Over the last 

couple of years generation of testbenches implemented in UVM have been widely introduced within the field by 

several contributors. This paper tries to leverage all of this previous work and introduce a layered abstraction for 

UVM testbenches which makes it possible to generate UVM-SystemVerilog (UVM-SV) and UVM-SystemC (UVM-

SC) based testbenches from the same abstract specification. Especially UVM-SystemC enables the reuse of 

testbenches, e.g. from concept level down to Hardware-in-the-loop (HiL) approaches. 
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I.  INTRODUCTION 

A. Setting the scene 

In many scenarios code generation or model driven software development can be beneficial. Especially, if one 

can reduce the complexity greatly by introducing an appropriate abstraction and then generate the actual source 

code. Non-ASIC verification software developers have been using this technique for decades. 

With the introduction of Universal Verification Methodology (UVM) [1], Application Specific Integrated 

Circuit (ASIC) verification entered that scenario since UVM testbenches are structured by nature and many parts 

can be generated. This paper presents an abstraction of a UVM testbench to generate both, SystemVerilog [2] 

(UVM-SV) and SystemC [3] (UVM-SC) testbenches. It also introduces new features compared to existing UVM 

generators by exploiting model driven software development. 

This paper will describe the extensions needed to support generating UVM-SC code on an existing UVM 

generator capable of generating UVM-SV code. Furthermore, all generated code will be based on a single 

example using the Wishbone protocol [4]. 

B. Benefits for the users and the UVM community 

Existing UVM generators are matched by this generator since it is also able to generate UVM-SV-based 

testbenches. Additionally, it will aid people in writing reusable UVM Verification Components (UVCs) and 

testbenches supporting hardware in the loop (HiL) as described in [5]. A reference platform for the UVM-SC 

implementation will also be provided, as well as a Wishbone-based reference example: this can potentially be 

explored by all IPs available from OpenCores [6]. Furthermore, the ability to validate UVCs implemented in 

UVM-SC versus UVM-SV back to back using an appropriate simulator is given. 

 

II. MODEL DRIVEN SOFTWARE DEVELOPMENT 

A. Our approach 

Model driven software development can be implemented in many ways. Typically, a custom script which reads 

abstract specifications from a file is the weapon of choice. Based on experience and leveraging from more than a 
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decade of development we have chosen to implement the UVM-XX generator in the open source Eclipse 

modeling Framework (EMF) [7]. 

B. EMF Features and Differences towards existing UVM generators 

EMF provides some general benefits which existing UVM generators lack, like preservable user regions. This 

makes the user able to rerun the generator to automatically update the generated regions. Typically, all of the 

existing generators do not support this. Another great benefit is the easiness of updating the abstract specification, 

since model specifications can be specified in XSD, BNF and UML. Moreover, multiple input formats are 

independently supported. Lastly, the generator comes with an highly developed template backend for easy 

template adaption. The user will also get Eclipse context aware editing and syntax highlighting for free. 

Figure 1 depicts the basic EMF flow where an abstract description of the model is provided and from that an 

EMF model is generated. The generated EMF model can then be filled with input and a template based backend 

can then generate the desired output.  

 

Figure 1: High level EMF flow description. 

III. ABSTRACTING UVM TEST BENCHES 

A. Pragmatism 

Many examples have been given for abstracting an RTL testbench over time. Especially, UVM-based 

testbenches have been targeted during the last couple of years. Much pragmatism has to be applied when defining 

the abstraction to avoid making it too ambitious and thus very difficult to implement and to use. Looking at what 

major tasks a verification engineer is typically facing will bring the following to one’s mind: 

 LUVC: Implementation of UVCs. 

 LB2B: Implementation of a back to back testbench for UVC verification. 

 LTB: Implementation of an RTL testbench utilizing various UVCs. The UVCs can be generated but 

they can also be legacy Verification IP (VIP) etc. 

 These three major tasks are usually dependent on one another since mostly the verification engineers 

implement the UVCs, verify them and finally utilize them in the “real” world. Thus, a generator which supports 

the tasks via a layered abstract specification for each, would be beneficial. 

 One of the key points in using model driven software development is that the abstraction should save you 

from unnecessary code, meaning that it should compress information into a compact format. At the same time, 

the input format has to be easy to read. To address these two issues, we have chosen to define the abstraction as 

domain specific language (DSL) in which we can express all three layers and the relations between them. We call 

this DSL “Verification Environment format” (VE).  

B. VE Format 

EMF supports XTEXT [8] for defining an eBNF-like (Extended Backus–Naur Form) specification of the VE 

DSL. Thus, the EMF model for VE can be generated by specifying its grammar via XTEXT as shown in Figure 

1. Selected parts of its definition are described related to each of the three layers mentioned in the section III.A. 

As a single DSL is used for all three layers, a separation on syntax level is needed. This is achieved by 

categorizing them into two types: VerificationComponent (LUVC) or EnvironmentComponent 
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(LB2B, LTB). This is captured in XTEXT as shown in Figure 2. Note the type field which is either vc or env 

and the mode field which allows distinction between LB2B and LTB for the EnvironmentComponent. 

Finding the correct abstraction level for specifying a UVC is the key. The main part is an abstraction for types 

and especially the driver/monitor code implementing the actual pin wiggling of the protocol should be abstracted 

as a part of the UVC abstraction. For the LUVC layer, section III.C describes directly how we handle types. For 

the protocol specific code, we have chosen to not abstract this for pragmatic reasons. As EMF supports 

preservable user regions we generate the driver, monitor etc. which contain protocol specific code without 

destroying it. The set of requirements for a LUVC abstraction boils down to: 

 Being preferable confined to a separate scope for reusability (e.g. an SV package). 

 Handle generic/reusable constants, types etc. 

 Specify almost any hierarchical layout of the UVC (e.g. support multiple agents within a single UVC 

etc.) and different types of drivers (e.g. master/slave, producer/consumer etc.). 

 Capture the RTL interface and the abstracted protocol transaction (UVM sequence item).. 

 Support UVC configuration. 

Figure 3 shows how all of these requirements are captured in the VE DSL as separate syntax blocks. Since the 

same pattern is used for all blocks and for brevity reasons then the remaining parts of this section only shows a 

few selected highlights of these blocks. 

 

Figure 2: XTEXT VE DSL Specification of separation of LUVC, 

LB2B and LTB. 

 

Figure 3: XTEXT VE DSL Specification of LUVC. 

One of the most important blocks is the InterfaceBlock which captures the RTL interface of the 

protocol handled by the UVC. This part of the VE DSL, shown in Figure 4, captures the signals in the interface, 

their types, but also the constants/parameters, clock and reset etc. See section V.A for a concrete example. 

 

 

Another quite important part of a UVC is the specification of the abstract transaction which captures a 

transaction on the bus. Figure 5 shows how this is captured in the VE DSL in the TransactionBlock section 

which more or less lets the user specify abstract variables for capturing the protocol centric information but also 

meta information such as can it be randomized etc. See section V.A for an example. 

ResetBlock: 

        {ResetBlock} 'reset' '{' 

                resetItems += InterfaceSignal* '}' 

; 

SignalBlock: 

        {SignalBlock} 'signal' '{' 

                signalItems += InterfaceSignal* '}' 

; 

InterfaceSignal: 

        ( 'name'  '=' name = STRING 

          & 'type'  '=' type = STRING 

          & ('sc_type'  '=' sc_type = STRING)? 

          & ('type_unpack'  '=' type_unpack = STRING)? 

          & ('driver' '=' driver = STRING)? 

          & ('resetval' '=' resetval = STRING)? 

          & ('comment' '=' comment = STRING)?) ';' 

; 

InterfaceBlock: 

        {InterfaceBlock} 'interface' '{' 

        ( parameterBlocks += ParameterBlock 

          | clockBlocks += ClockBlock 

          | resetBlocks += ResetBlock 

          | signalBlocks += SignalBlock)* '}' 

; 

ParameterBlock: 

        {ParameterBlock} 'parameter' '{' 

                parameterItems += ParameterItem* '}' 

; 

ParameterItem: 

        ( 'name'  '=' name = STRING 

          & 'type'  '=' type = STRING 

          & 'value' '=' value = STRING 

          & ('comment' '=' comment = STRING)? ) ';' 

; 

ClockBlock: 

        {ClockBlock} 'clock' '{' 

                clockItems += InterfaceSignal* '}' 

; 

VerificationComponent: 

        'type' '=' '"vc"' 

        'name' '=' name = STRING 

        ( constantBlocks += ConstantBlock 

          | typeBlocks += TypeBlock 

          | agentBlocks += AgentBlock 

          | driverBlocks += DriverBlock 

          | interfaceBlocks += InterfaceBlock 

          | checkBlocks += CheckBlock 

          | transactionBlocks += TransactionBlock 

          | configurationBlocks += ConfigurationBlock)* 

; 

Component: 

  VerificationComponent | EnvironmentComponent 

; 

VerificationComponent: 

  'type' '=' '"vc"' 

  'name' '=' name = STRING 

  … 

EnvironmentComponent: 

  (imports+=Import)* 

  'type' '=' '"env"' 

  'name' '=' name = STRING 

  'mode' '=' mode = STRING 

  … 

Figure 4: XTEXT VE DSL Specification for the interface part of the UVC. 
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The EnvironmentComponent defines the abstract information needed to generate testbenches for both 

the LB2B and LTB layers. The distinction between the two types of testbenches is needed since more code can be 

generated for LB2B testbenches as they are by nature simpler and only require a single generated UVC. An 

EnvironmentComponent can be generated by setting the type to env and specifying either back2back 

or tb in the mode field in order to obtain a back to back testbench or an RTL testbench, respectively. 

Additionally, the VE DSL allows multiple VerifcompBlocks for specifying which UVCs to instantiate, a 

ScoreboardBlock for expressing instantiation and hook up of the generic UVM scoreboard (see [9] for more 

details), a EnvconfigBlock for handling the configuration of the environment and finally multiple sequence 

and test blocks for specifying virtual sequences and tests to be used with the generated testbench. See Figure 6 for 

a VE DSL snippet and section V.B for an example. Note the support for importing other VE files.  

 

Figure 5: XTEXT VE DSL Specification of an abstract transaction. 

 

Figure 6: XTEXT VE DSL Specification of testbench blocks. 

C. Handling Types 

Types can be very difficult to handle and especially type conversion between two similar but not completely 

equivalent languages like SytemVerilog and SystemC. We even avoided implementing an abstraction for SV 

types in the UVM-SV only version of the generator simply to be pragmatic. We kept e.g. the type definition of a 

signal in the InterfaceBlock as a string for complete freedom. As we are extending the UVM-SV generator 

to support UVM-SC and its types we have three ways of implementing this: 

1. Raising the abstraction level of types from a simple string to a real meta type, which should be a 

superset of at least the types in SystemC and SystemVerilog, to correctly generate types. 

2. Implement a full SystemVerilog to SystemC type translator which would parse the existing 

SystemVerilog string and translate that into the appropriate SystemC type. 

3. Implement a simpler version of (2) which has no parsing involved but simply some fixed mapping of 

the standard types and with the possibility to do user overwrites for complete freedom. 

(1) requires a major rework of the current UVM-SV generator and the actual definition of the superset types. 

(2) could be embedded into the existing UVM-SV generator but requires a lot of code to handle all possible type 

translations. Hence, we have chosen (3) which actually doesn’t break the option for a switch to (2) later on. 

Thus, the only thing we have had to change in the VE DSL is the addition of an optional sc_type string which 

can be seen in Figure 4 and Figure 5. Thus, types in the UVM-SV/SC generator will be resolved as follows: 

 If a local sc_type has been specified, use that. 

 If a user defined type translation has been specified for a certain SV type, then use that. 

 If a default type translation has been specified for a certain SV type, then use that. 

 If none of the 3 first types resolve rules do not apply, then signal SystemC type error. 

EnvironmentComponent: 

        (imports+=Import)* 

        'type' '=' '"env"' 

        'name' '=' name = STRING 

        'mode' '=' mode = STRING 

        ( verifcompBlocks += VerifcompBlock 

          | scoreboardBlocks += ScoreboardBlock 

          | envconfigBlocks += EnvconfigBlock 

          | sequenceBlocks += SequenceBlock 

          | testBlocks += TestBlock)* 

; 

Import: 

        'import' importURI = STRING 

; 

TransactionBlock: 

        {TransactionBlock} 'transaction' '{' 

        ( dataBlocks += DataBlock 

          | … 

        '}' 

; 

DataBlock: 

        {DataBlock} 'data' '{' 

                dataItems += DataItem* 

        '}' 

; 

DataItem: 

        ( 'name'  '=' name = STRING 

          & 'type'  '=' type = STRING 

          & ('sc_type'  '=' sc_type = STRING)? 

          & ('type_unpack'  '=' type_unpack = STRING)? 

          & 'rand' '=' rand = STRING 

          & ('default' '=' default = STRING)? 

          & 'macro'  '=' macro = STRING 

          & ('macroflag'  '=' macroflag = STRING)? 

          & ('comment' '=' comment = STRING)?) 

        ';' 

; 
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IV. GENERATING UVM 

Generating UVM source code is fairly straight forward due to the EMF framework. The general flow is 

depicted in Figure 7 which shows the EMF application UVMGen for each of the three layers. A set of UVM-SV 

and UVM-SC templates for each layer are traverses the VE model and produces UVM-SV/SC source code. 

 

Figure 7: VE file input  VE EMF model  MTL Templates  UVM source code. 

 

A. UVM – SystemVerilog (UVM-SV) 

Invoking UVMGen with a LUVC, LB2B or LTB VE file and the UVM-SV templates will generate a set of 

UVM-SV classes. The classes implement quite standard UVM-SV except from a few exceptions: 

 The virtual interfaces are distributed from topleveltestenviromentUVCs to ensure maximum 

vertical reuse. 

 The UVM config DB is deliberately not used very much since it embraces unorganized code. 

 Parameters are distributed as class parameters for easy access. 

 UVC components deliberately use implcit phasing (run_phase) to avoid phase jumping problems. 

 UVM tests use explicit phasing for optimal testcase control. 

 Virtual sequences are primarily implemented using the following design pattern: random member 

variables are created if needed in pre_randomize() and not in the body(). Thus, they are 

randomized when the sequence is randomized and cross constraints on them can be implemented. This 

can be cumbersome if all is handled in the body() task. 

B. UVM – SystemC (UVM-SC) 

Once we have UVM-SV generated then extension to also generate UVM-SC is quite easy since the EMF 

platform combined with the VE DSL gives the following advantages: 

 Quite high abstraction within the VE DSL (One specification, Multiple implementations). 

 Single EMF model with separates template sets (can handle the same abstraction individually in UVM-

SV and UVM-SC). 

 User regions for difficulty to generate parts. 

 Elegant solution to the type conversion problem between SystemVerilog and SystemC. 

V. EXAMPLE 

A brief walkthrough of the Wishbone example is hereby presented. The example utilizes the Wishbone 

protocol. Thus, a Wishbone UVC and a back-2-back testbench for this UVC have to be generated. 
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A. Wishbone UVC 

For generating the Wishbone UVC, a VE file with type field equals to vc has been defined (Figure 8). 

 

The VE file is then filled up with the remaining blocks as described in the XTEXT file. Figure 9 shows the 

agent, driver and interface blocks: there is an instance of the agent, two drivers (master and slave), 

and the interface block containing definitions for the Wishbone interface. 

//----------------------------------------------------------------------- 

// Wishbone protocol interface definition 

//----------------------------------------------------------------------- 

agent {  numInst = 1; protocol = wishbone;  } 

driver wishbone { 

  variant = "master"         comment="Master side of protocol"; 

  variant = "slave"          comment="Slave side of protocol"; } 

interface { 

  parameter { 

    name="WB_DATA_BYTE_NUM" type="int" value="pk_wb::WB_DATA_BYTE_NUM" 

      comment="WB data number of bytes"; 

    name="WB_DATA_WIDTH"    type="int" value="pk_wb::WB_DATA_WIDTH" 

      comment="WB data width"; 

    …  } 

  clock {  name="clk"     type="logic"  comment="Main clock";  } 

  reset {  name="rst"     type="logic"  comment="Main reset";  } 

  signal { 

    name="dat_o" type="logic[WB_DATA_WIDTH-1:0]"    driver="master" 

      resetval="'x"  comment="WISHBONE data with same direction as adr"; 

    name="adr"   type="logic[WB_ADDR_WIDTH-1:0]"    driver="master" 

      resetval="'x"  comment="WISHBONE address"; 

    name="sel"   type="logic[WB_DATA_BYTE_NUM-1:0]" driver="master" 

      resetval="'x"  comment="WISHBONE byte select";   …  } 

} 

//----------------------------------------------------------------------- 

// Wishbone protocol transaction definition 

//----------------------------------------------------------------------- 

transaction { 

  data { 

    name="dat" type="logic[WB_DATA_WIDTH-1:0]"     rand="yes" 

      macro="int"   comment="Wishbone data"; 

    name="adr"          type="logic[WB_ADDR_WIDTH-1:0]"     rand="yes" 

      macro="int"   comment="Wishbone address"; 

    name="sel"          type="logic[WB_DATA_BYTE_NUM-1:0]"  rand="yes" 

      macro="int"   comment="Wishbone byte select"; 

    name="op"           type="tp_op"                        rand="yes" 

      macro="enum"  comment="Wishbone operation"; 

    …  } 

  delay { 

    name="master_delay_cyc0_cyc1" type="int"              rand="yes" 

      macro="int"   macroflag="UVM_ALL_ON | UVM_NOCOMPARE" 

      comment="Wishbone master delay before rising CYC"; 

    …  } 

  delayconstraint { 

    driver="master"  item="master_delay_cyc0_cyc1" 

      nodelay_if="no_master_slave_delays" 

      maxdelay="max_master_delay_cyc0_cyc1";   …  } 

} 
Figure 9: VE code for the Agent, Driver and Interface blocks. 

 

Figure 10: VE code for the Transaction block. 

 

Figure 10 illustrates the transaction block: the transaction is composed by a set of data, delays and 

constraints to be applied on the delays. The data elements, which can be defined as random by setting the rand 

field, capture the different signals related to the Wishbone protocol (e.g. dat is the transferred data, adr the 

address, op defines if the transaction is a read or a write operation) and their type is specified by the type field. 

Once the VE file is completed, it shall be passed as input to UVMGen which will then generate all the UVM 

classes for the Verification Component. Table I shows a fragment of the generated code for the UVM Agent 

class, with a comparison between UVM-SV and UVM-SC. Note the tags KEEP -> Start/End of user code 

delimiting the user regions. 

Table I: Comparison of generated code for the UVC Agent: SystemVerilog (left) and SystemC (right) 

class cl_wb_wishbone_agent extends uvm_agent; 

//----------------------------------------------------------------------- 

  // Analysis port connected to monitor 

  uvm_analysis_port #(cl_wb_seq_item) ap; 

  cl_wb_config cfg;           // Handle to configuration object 

  cl_wb_sequencer sequencer;  // Transaction sequencer 

  cl_wb_wishbone_monitor monitor;      // Signal monitor 

  cl_wb_wishbone_driver driver;        // Signal driver 

  // ************** KEEP ->Start of user code FIELDS 

  // Add user code for FIELDS here! 

  // ************** KEEP ->End of user code FIELDS 

  … 

// Builds the agent 

//----------------------------------------------------------------------- 

function void cl_wb_wishbone_agent::build_phase(uvm_phase phase); 

  super.build_phase(phase); 

  // Contruct analysis port 

  this.ap = new("ap", this); 

  // if no cfg available from global table, a random one is generated 

  if (!uvm_config_db #(cl_wb_config)::get(this, "", "cfg", this.cfg)) 

begin 

    `uvm_warning("CFG", {"Configuration object not initialized from ", 

      "outside. Generating one internally"}); 

    this.cfg = cl_wb_config::type_id::create("cfg"); 

    if(!this.cfg.randomize()) begin 

      `uvm_fatal("CONFIG", "Unable to randomize configuration"); 

    end 

  end 

  // Creates the monitor, a handle to 'cfg' is passed down to the monitor 

  uvm_config_db #(cl_wb_config)::set(this, "monitor", "cfg", this.cfg); 

  this.monitor = cl_wb_wishbone_monitor::type_id::create("monitor",this); 

  if(this.cfg.is_active) begin 

    // Creates the driver (conditionally: 'active_passive') 

    // a handle to 'cfg' is passed down to the driver 

    uvm_config_db #(cl_wb_config)::set(this, "driver", "cfg", this.cfg); 

    this.driver = cl_wb_wishbone_driver::type_id::create("driver", this); 

class cl_wb_wishbone_agent: public uvm::uvm_agent { 

//----------------------------------------------------------------------- 

  // Analysis port connected to monitor 

  uvm_analysis_port<cl_wb_seq_item>* ap; 

  cl_wb_config* cfg;           // Handle to configuration object 

  cl_wb_sequencer* sequencer;  // Transaction sequencer 

  cl_wb_wishbone_monitor* monitor;      // Signal monitor 

  cl_wb_wishbone_driver* driver;        // Signal driver 

  // ************** KEEP ->Start of user code FIELDS 

  // Add user code for FIELDS here! 

  // ************** KEEP ->End of user code FIELDS 

  … 

// Builds the agent 

//----------------------------------------------------------------------- 

  void build_phase(uvm::uvm_phase phase) { 

    uvm::uvm_agent::build_phase(phase); 

    // Contruct analysis port 

    ap = new("ap", this); 

    // if no cfg available from global table, a random one is generated 

    if (!uvm::uvm_config_db<cl_wb_config>::get(this, "", "cfg", cfg)) { 

      UVM_WARNING("CFG", "Configuration object not initialized from 

outside. Generating one internally"); 

      cfg = cl_wb_config::type_id::create("cfg"); 

      if(!cfg->randomize()) { 

        UVM_FATAL("CONFIG", "Unable to randomize configuration"); 

      } 

    } 

  // Creates the monitor, a handle to 'cfg' is passed down to the monitor 

    uvm::uvm_config_db<cl_wb_config>::set(this, "monitor", "cfg", cfg); 

    monitor = cl_wb_wishbone_monitor::type_id::create("monitor", this); 

    if(is_active) { 

      // Creates the driver (conditionally: 'active_passive') 

      // a handle to 'cfg' is passed down to the driver 

      uvm::uvm_config_db<cl_wb_config>::set(this, "driver", "cfg", cfg); 

    driver = cl_wb_wishbone_driver::type_id::create("driver", this); 

  } 

}; 

//-------------------------- 

// Definition for the WB VC 

// Lead UVMGen example. 

//-------------------------- 

type="vc" 

name="wb" 

Figure 8: Initial VE code to generate a wishbone UVC. 
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B. Wishbone back to back testbench 

The approach for generating the back to back testbench is very similar to the one applied for the generation of 

the Wishbone UVC, using a different VE file to obtain generated UVM classes. A VE file with type field equals 

to env has been defined (Figure 11). 

 

Following the XTEXT syntax, the VE file is then completed with the remaining blocks. Figure 12 shows the 

verifcomp block, where it is defined which, how many and what variant (master or slave) verification 

components will be instantiated. The envconfig, sequence, and test blocks are then used for generating 

different tests which rely on different sequences and configuration files. The base field allows to define which 

file to extend from: in this case, with an empty base for all the sequences and tests, these will extend 

respectively from cl_wb_b2b_base_seq and cl_wb_b2b_base_test, which are generated by default. 

//----------------------------------------------------------------------- 

// List of verification components to use 

// Type must be known VC 

//----------------------------------------------------------------------- 

verifcomp { 

  name="wb_master"  type="wb"  active="yes" driver="master"; 

  name="wb_slave"   type="wb"  active="yes" driver="slave"; 

  name="wb_monitor" type="wb"  active="no" ; } 

//----------------------------------------------------------------------- 

// List of configurations to be used by tests 

//----------------------------------------------------------------------- 

envconfig { 

   name="basicconf"   base="";           // Declares cl_config_basicconf, 

extends cl_wb_b2b_config  

   name="userconf"    base="basicconf"; }// Declares cl_config_userconf, 

extends cl_config_basic 

… 

… 

//----------------------------------------------------------------------- 

// List of sequences to be used by tests 

//----------------------------------------------------------------------- 

sequence { 

   name="basicseq"   base="";         // Declares cl_seq_basicseq, 

extends cl_wb_b2b_base_seq 

   name="randomseq"  base=""; }       // Declares cl_seq_randomseq, 

extends cl_wb_b2b_base_seq 

//----------------------------------------------------------------------- 

// List of tests 

//----------------------------------------------------------------------- 

test { 

   name="basictest"   base=""    topseq="basicseq"    

envconfig="basicconf"; 

   name="randomtest"  base=""    topseq="randomseq"   

envconfig="userconf"; } 

Figure 12: VE code for Verifcomp, Envconfig, Sequence and Test blocks. 

Once the VE file is completed, it shall be passed as input to UVMGen which will then generate all the UVM 

classes for the testbench. Table II shows a fragment of the generated code for the UVM Environment class, with a 

comparison between UVM-SV and UVM-SC. Note the tags KEEP -> Start/End of user code 

delimiting the user regions. 

Table II: Comparison of generated code for B2B testbench environment: SystemVerilog (left) and SystemC (right). 

class cl_wb_b2b_env extends uvm_env; 

//--------------------------------------------------------------------- 

  cl_wb_b2b_config cfg; // Configuration class handle 

  // Virtual sequencer 

  cl_wb_b2b_virtual_sequencer virtual_sequencer; 

  // Module VC(s) & Interface VC(s) 

  cl_wb_env wb_master; 

  cl_wb_env wb_slave; 

  cl_wb_env wb_monitor; 

  // ************** KEEP ->Start of user code FIELDS 

  // Add user code for FIELDS here! 

  // ************** KEEP ->End of user code FIELDS 

  … 

// Build environment 

//--------------------------------------------------------------------- 

function void cl_wb_b2b_env::build_phase(uvm_phase phase); 

  pre_build(); 

  super.build_phase(phase); 

  // If no cfg available from global table, a random one is generated 

  if (!uvm_config_db #(cl_wb_b2b_config)::get(this, "", "cfg", 

this.cfg)) begin 

    `uvm_warning("CFG", {"Configuration object not initialized from ", 

      "outside. Generating one internally"}); 

    this.cfg = cl_wb_b2b_config::type_id::create("cfg"); 

    if(!this.cfg.randomize()) begin 

      `uvm_fatal("CONFIG", "Unable to randomize configuration"); 

    end 

  end 

 

  uvm_config_db #(cl_wb_b2b_config)::set(this, "virtual_sequencer", 

"cfg", this.cfg); // push down config 

  this.virtual_sequencer = 

cl_wb_b2b_virtual_sequencer::type_id::create("virtual_sequencer", 

this); 

  uvm_config_db #(cl_wb_config)::set(this, "wb_master", "cfg", 

this.cfg.wb_master_cfg); 

  this.wb_master = cl_wb_env::type_id::create("wb_master", this); 

  uvm_config_db #(cl_wb_config)::set(this, "wb_slave", "cfg", 

this.cfg.wb_slave_cfg); 

  this.wb_slave = cl_wb_env::type_id::create("wb_slave", this); 

class cl_wb_b2b_env: public uvm::uvm_env { 

//----------------------------------------------------------------------- 

public: 

  cl_wb_b2b_config* cfg; // Configuration class handle 

  // Virtual sequencer 

  cl_wb_b2b_virtual_sequencer* virtual_sequencer; 

  // Module VC(s) & Interface VC(s) 

  cl_wb_env* wb_master; 

  cl_wb_env* wb_slave; 

  cl_wb_env* wb_monitor; 

  // ************** KEEP ->Start of user code FIELDS 

  // Add user code for FIELDS here! 

  // ************** KEEP ->End of user code FIELDS 

  … 

// Build environment 

//----------------------------------------------------------------------- 

  void build_phase(uvm::uvm_phase& phase) { 

    pre_build(); 

    uvm::uvm_env::build_phase(phase); 

    // If no cfg available from global table, a random one is generated 

    if (!uvm::uvm_config_db<cl_wb_b2b_config*>::get(this, "", "cfg", 

cfg)) { 

      UVM_WARNING("CFG", "Configuration object not initialized from 

outside. Generating one internally"); 

      cfg = cl_wb_b2b_config::type_id::create("cfg"); 

      if(!this.cfg.randomize()) { 

        UVM_FATAL("CONFIG", "Unable to randomize configuration"); 

      } 

    } 

    uvm::uvm_config_db<cl_wb_b2b_config>::set(this, "virtual_sequencer", 

"cfg", cfg); // push down config 

    virtual_sequencer = 

cl_wb_b2b_virtual_sequencer::type_id::create("virtual_sequencer", this); 

    uvm::uvm_config_db<cl_wb_config*>::set(this, "wb_master", "cfg", 

cfg.wb_master_cfg); 

    wb_master = cl_wb_env::type_id::create("wb_master", this); 

    uvm::uvm_config_db<cl_wb_config*>::set(this, "wb_slave", "cfg", 

cfg.wb_slave_cfg); 

    wb_slave = cl_wb_env::type_id::create("wb_slave", this); 

    uvm::uvm_config_db<cl_wb_config*>::set(this, "wb_monitor", "cfg", 

//---------------------------------------------------- 

// Definition for the WB back2back verification setup. 

// Lead UVMGen example. 

//---------------------------------------------------- 

import "wishbone.ve" 

type="env" 

name="wb_b2b" 

mode="back2back" 

Figure 11: Initial VE code to generate a wishbone B2B testbench. 
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  uvm_config_db #(cl_wb_config)::set(this, "wb_monitor", "cfg", 

this.cfg.wb_monitor_cfg); 

  this.wb_monitor = cl_wb_env::type_id::create("wb_monitor", this); 

 

// Connect environment 

//--------------------------------------------------------------------- 

function void cl_wb_b2b_env::connect_phase(uvm_phase phase); 

  super.connect_phase(phase); 

 

  // Connect handles of local sequencers to virtual sequencer 

  this.virtual_sequencer.wb_master_wishbone_agent_sequencer = 

this.wb_master.wishbone_agent.sequencer; 

  this.virtual_sequencer.wb_slave_wishbone_agent_sequencer = 

this.wb_slave.wishbone_agent.sequencer; 

 

cfg.wb_monitor_cfg); 

    wb_monitor = cl_wb_env::type_id::create("wb_monitor", this); 

  } 

// Connect environment 

//----------------------------------------------------------------------- 

  void connect_phase(uvm::uvm_phase& phase) { 

    uvm::uvm_env::connect_phase(phase); 

 

    // Connect handles of local sequencers to virtual sequencer 

    virtual_sequencer->wb_master_wishbone_agent_sequencer = 

      wb_master->wishbone_agent->sequencer; 

    virtual_sequencer->wb_slave_wishbone_agent_sequencer = 

      wb_slave->wishbone_agent->sequencer; 

  } 

}; 

VI. FUTURE EXTENSIONS 

The current implementation only handles LUVC and LB2B for UVM-SC. It is obvious to extend this to 

handle LTB as well. Additionally, one can start looking into abstraction of functional coverage so that a common 

functional coverage model can be shared. This would of course require that something equivalent to SV 

functional coverage exists in the SC language. Additionally, UVMGen could be extended with many new features 

since there is no limit for how many template sets you can have. For instance, testbench documentation could be 

generated from the same EMF model including a figure showing the testbench architecture, since the EMF model 

would contain this information. 

VII. CONCLUSION 

We have proven that a pragmatic approach coupled with model driven software development techniques is a 

great universal solution for testbench generation. It is very easy to adapt to new UVM versions and the user 

regions are very useful to reuse this approach after the initial testbench generation which is a typical shortcoming 

of other generators. Furthermore, we defined an abstraction for specifying UVCs and UVM testbenches in 

general which can be extended. This abstract specification was demonstrated to be able to generate complex 

testbenches by showing side-by-side examples for UVM-SV and UVM-SC. A single user entry source (the 

abstract specification) was used to generate code for different target languages while being concrete enough to be 

useful. This fact and the nature of UVM, to separate the testbench from the DUT, makes it easy to reuse and 

gather tests over many designs to improve verification already on the earliest level. Reuse of testbenches on HiL-

approaches for UVM-SC where shown in [5] which makes the methodology shown in this paper applicable in an 

even broader reuse aspect. 
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