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Key requirements

* Full device register access verification using UVM
Register Abstraction Layer

e SPIl used for register access
e Bit-resolution access level

* supports_byte enable of uvm_reg adapter class?
Not adequate!

e Complex buffer access mechanism?
Not straightforward to implement!

* Reusability for passive operation
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SPI UVC

* Master/slave architecture
e Standard 3-wire/4-wire communication

e Configurable clock period, duty cycle, clock polarity,
clock phase

* Configurable timings between signals
* Configurable transaction length

* SystemVerilog assertions
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uvm_callback - developer
implementation

S Abstract callback class
virtual class spi_callback extends uwm_callback;

“uwm_obiject_utils(spi_cal Tback)

[ new

function new (string name = “spi_callback™);
SUper. newname) ;

endfunction : new

S/ Pre-processing - empty task
virtual task pre_processing (spi_driver driver, spi_transfer trans);
endtask : pre_processing

S/ Post-proces=sing - empty task
virtual task post_processing(spi_driver driver, spi_transfer trans);
endtask : post_processing

endclass : spi_callback

/ Registration of a callback class within a driver
“uvm_register_cb(spi_driver, spi_callback)

S Ewecution of a callback method within a driver
“uvr_do_callbacks(spi_driver, =pi_callback, post_processing(this, trans))
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SPI Communication Format

* The Header byte
— Read/write bit + 7 address bits

e Data bits

— An arbitrary number of data bits can be transmitted
— UVM documentation recommends byte-level granularity

DataN ! Data0
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Register types (1)

e Configuration registers
— Can be updated by writing bit by bit

e Control registers
— Must be written completely for changes to take effect

— Partial writes completely ignored

SYSTEMS INITIATIVE

ff Prediction of configuration and control registers
temp_reg = uwm_reg_ext'(reg_model.default_map.get_reg_by _offset(transfer.addr));

temp_data = temp_reg.get_mirrored_value();
if (transfer.kind == UVM_WRITE)
begin
if ( (temp_reg.reg_type == CONF) ||

for (int i=0; <DATA_SIZE; i++)

hegin
temp_data DATA_UPDATE_L5B+1] = transfer.transmit_datali];
end
end
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Register types (2)

e TX buffer (SPI-to-COM communication)
— Variable buffer size
— Write the Header byte
— Write BUFF_NBITS byte
— Write data bits
— Total length calculated in adapter reg2bus function
— Overflow and underflow sequences
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Register types (3)

* RX buffer (COM-to-SPI communication)
— Variable buffer size
— Write the Header byte
— Read BUFF_NBITS byte
— Read data bits
— Total length not known at the start of a transaction
— By default, 16 SPI clock cycles (8 - Header, 8 - BUFF_NBITS)
— The additional clock cycles generated using a callback
— Overflow and underflow sequences
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uvm_callback - user implementation
(1)

class concrete_spi_callback extends spi_callback;

“uvm_ohject_utils(concrete_spi_callback)

[ new

function new (string name = “"concrete_spi_callback™);
super. newl name) ;

endfunction : new

S Pre-processing - empty task
virtual task pre_processing (spi_driver driver, spi_transfter trans);
endtask : pre_processing

"/ Post-processing - implementation
virtual task post_processing(spi_driver driwver, spi_transfer trans);
S5 RX buffer read - drive extra bits

1T ((address == "RXBUFF_0) &% (kind == SPI_READ))
begin

driver.drive_transfer(trans, buff_nbits);
end

endtask : post_processing

endclass @ concrete_spi_callback
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uvm_callback - user implementation

(2)

S A concrete callback class object declaration
concrete_spi_callback concrete_spi_ch;

S/ A concrete callback class object creation
concrete_spi_cbh = concrete_spi_callback: :type_id::create("concrete_spi_ch™);

J{ Registration of a concrete callback class with the uvC driver
uvm_callbacks #(spi_driver, spi_callback)::add(spi0.agents_1[0].spi_driver_1,
concrete spi_ch);
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Extension object

e Default or user-modified transaction

// Class reg_ob3 // Within the adapter
class reg_obj extends wwm_object; function uvm_seguence_item regZbus (const ref uvm_reg_bus_op rw);
spi_transfer transfer;
rand bit use_default_length = 1; reg_obj obj;
rand bit use_default_timing = 1: uvm_reg_item reg_item;
- . transfer = spi_transfer::type_id::create"transfer”);
rand int Tength = 8 reg_item = this.get_item():

. . . . . Scast(obj, reg_item.extension);
uvm_okject_utils_begin(reg_ocbj) 1r FEg )i

“uvm_ohkject_uti1ls_end
if ( (oby == null) ||

function new (string name = “reg_obj”); ((obj !'= null) && (obj.use_default_length == 1)))
SuUper. newname); eoo S use default
endfunction : new else

transfer.num_bits = obj.length;
endclass @ reg_obj

endfunction

S Within a register sequence - underflow scenario
ohj.use_default_length = 0y
void' (obj.randomize(length) with

I length inside { [0 @ regs/i].get_n_bits()] }: 173
regs[1].write(status, data, .parent(this), .extensioniobi)l);
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Power management

* Multiple power domains

* Global power monitor

* Register power supply - locking field

* Software reset - post_predict()

* Software power switch - locking field + post predict()
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Results

All critical scenarios covered
— Overflow, underflow

— Power management

— Reset injection

— Priority scenarios

Extensible

Well encapsulated
* Seamless integration expected
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Summary

 UVM_REG beneficial for serial register access
— Built-in checking mechanism
— Abstract reusable stimulus
— Coverage model

e Partial register access
 uvm_callback
e Extension object
* Power supply modeling
* Passive operation
2016
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Questions?

Thanks!
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