Extending UVM Register Abstraction Layer
for Verification of Register Access
via Serial Bus Interface

Darko M. Tomusilovic
Elsys Eastern Europe d.o.o.

/l ELSYS 5012
acecelfera) @200 e BEE

SYSTEMS INITIATIVE

Agenda

* Key requirements

* SPI Universal Verification Component
* SPlI Communication Format

* Register Types

e Extension Object

* Power Management

* Summary

accellera - DV T
© Accellera Systems Initiative 2 oleEReNcEANDEKHIBITION

SYSTEMS INITIATIVE

Key requirements

* Full device register access verification using UVM
Register Abstraction Layer

e SPIl used for register access
e Bit-resolution access level

* supports_byte enable of uvm_reg adapter class?
Not adequate!

e Complex buffer access mechanism?
Not straightforward to implement!

* Reusability for passive operation

DESIGN AND VE zQJ'IéDN'
accellera - DVETTIN
© Accellera Systems Initiative 3 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

SPI UVC

* Master/slave architecture
e Standard 3-wire/4-wire communication

e Configurable clock period, duty cycle, clock polarity,
clock phase

* Configurable timings between signals
* Configurable transaction length

* SystemVerilog assertions

2016
accellera - BRI
© Accellera Systems Initiative 4 CONFERENCE AND EXHIEITION

SYSTEMS INITIATIVE

uvm_callback - developer
implementation

S Abstract callback class
virtual class spi_callback extends uwm_callback;

“uwm_obiject_utils(spi_cal Tback)

[new

function new (string name = “spi_callback™);
SUper. newname) ;

endfunction : new

S/ Pre-processing - empty task
virtual task pre_processing (spi_driver driver, spi_transfer trans);
endtask : pre_processing

S/ Post-proces=sing - empty task
virtual task post_processing(spi_driver driver, spi_transfer trans);
endtask : post_processing

endclass : spi_callback

/ Registration of a callback class within a driver
“uvm_register_cb(spi_driver, spi_callback)

S Ewecution of a callback method within a driver
“uvr_do_callbacks(spi_driver, =pi_callback, post_processing(this, trans))

oo 2010
accellera EVETT I

© Accellera Systems Initiative 5 Pl el S
SYSTEMS INITIATIVE

SPI Communication Format

* The Header byte
— Read/write bit + 7 address bits

e Data bits

— An arbitrary number of data bits can be transmitted
— UVM documentation recommends byte-level granularity

DataN ! Data0

accellera - DV T
© Accellera Systems Initiative 6 . colrEReNcEANDEHETON

SYSTEMS INITIATIVE

Register types (1)

e Configuration registers
— Can be updated by writing bit by bit

e Control registers
— Must be written completely for changes to take effect

— Partial writes completely ignored

SYSTEMS INITIATIVE

ff Prediction of configuration and control registers
temp_reg = uwm_reg_ext'(reg_model.default_map.get_reg_by _offset(transfer.addr));

temp_data = temp_reg.get_mirrored_value();
if (transfer.kind == UVM_WRITE)
begin
if ((temp_reg.reg_type == CONF) ||

for (int i=0; <DATA_SIZE; i++)

hegin
temp_data DATA_UPDATE_L5B+1] = transfer.transmit_datali];
end
end
© Accellera Systems Initiative 7

2016

DESIGM ARND WERIFIZATIORN™

DV

COMNFERENCE AND EXHIEITION

Register types (2)

e TX buffer (SPI-to-COM communication)
— Variable buffer size
— Write the Header byte
— Write BUFF_NBITS byte
— Write data bits
— Total length calculated in adapter reg2bus function
— Overflow and underflow sequences

2016
accellera - BRI
© Accellera Systems Initiative 8 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Register types (3)

* RX buffer (COM-to-SPI communication)
— Variable buffer size
— Write the Header byte
— Read BUFF_NBITS byte
— Read data bits
— Total length not known at the start of a transaction
— By default, 16 SPI clock cycles (8 - Header, 8 - BUFF_NBITS)
— The additional clock cycles generated using a callback
— Overflow and underflow sequences

2016
accellera - BRI
© Accellera Systems Initiative 9 CONFERENCE AND EXHIEITION

SYSTEMS INITIATIVE

uvm_callback - user implementation
(1)

class concrete_spi_callback extends spi_callback;

“uvm_ohject_utils(concrete_spi_callback)

[new

function new (string name = “"concrete_spi_callback™);
super. newl name) ;

endfunction : new

S Pre-processing - empty task
virtual task pre_processing (spi_driver driver, spi_transfter trans);
endtask : pre_processing

"/ Post-processing - implementation
virtual task post_processing(spi_driver driwver, spi_transfer trans);
S5 RX buffer read - drive extra bits

1T ((address == "RXBUFF_0) &% (kind == SPI_READ))
begin

driver.drive_transfer(trans, buff_nbits);
end

endtask : post_processing

endclass @ concrete_spi_callback

2016
accellera - VT
© Accellera Systems Initiative 10 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

uvm_callback - user implementation

(2)

S A concrete callback class object declaration
concrete_spi_callback concrete_spi_ch;

S/ A concrete callback class object creation
concrete_spi_cbh = concrete_spi_callback: :type_id::create("concrete_spi_ch™);

J{ Registration of a concrete callback class with the uvC driver
uvm_callbacks #(spi_driver, spi_callback)::add(spi0.agents_1[0].spi_driver_1,
concrete spi_ch);

2016
accellera - DV TN
© Accellera Systems Initiative 11 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Extension object

e Default or user-modified transaction

// Class reg_ob3 // Within the adapter
class reg_obj extends wwm_object; function uvm_seguence_item regZbus (const ref uvm_reg_bus_op rw);
spi_transfer transfer;
rand bit use_default_length = 1; reg_obj obj;
rand bit use_default_timing = 1: uvm_reg_item reg_item;
- . transfer = spi_transfer::type_id::create"transfer”);
rand int Tength = 8 reg_item = this.get_item():

. Scast(obj, reg_item.extension);
uvm_okject_utils_begin(reg_ocbj) 1r FEg)i

“uvm_ohkject_uti1ls_end
if ((oby == null) ||

function new (string name = “reg_obj”); ((obj !'= null) && (obj.use_default_length == 1)))
SuUper. newname); eoo S use default
endfunction : new else

transfer.num_bits = obj.length;
endclass @ reg_obj

endfunction

S Within a register sequence - underflow scenario
ohj.use_default_length = 0y
void' (obj.randomize(length) with

I length inside { [0 @ regs/i].get_n_bits()] }: 173
regs[1].write(status, data, .parent(this), .extensioniobi)l);

2016
accellera - VT
© Accellera Systems Initiative 12 CONFERENGE AND EXHIBITION

SYSTEMS INITIATIVE

Power management

* Multiple power domains

* Global power monitor

* Register power supply - locking field

* Software reset - post_predict()

* Software power switch - locking field + post predict()

2016
accellera - VT IR
© Accellera Systems Initiative 13 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Results

All critical scenarios covered
— Overflow, underflow

— Power management

— Reset injection

— Priority scenarios

Extensible

Well encapsulated
* Seamless integration expected

accellera - DV T
© Accellera Systems Initiative 4 . coNEneRcEANDSHEmON

SYSTEMS INITIATIVE

Summary

 UVM_REG beneficial for serial register access
— Built-in checking mechanism
— Abstract reusable stimulus
— Coverage model

e Partial register access
 uvm_callback
e Extension object
* Power supply modeling
* Passive operation
2016

accellera - VT
© Accellera Systems Initiative 15 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Acknowledgment

The author would like to thank the entire
Texas Instruments Freising Security
design and management team and
Elsys Eastern Europe d.o.o. Belgrade
verification and management team

for their support during the implementation of
aforementioned solutions.

DESIGN AND VE zgl'éDN'
accellera - VT IR
© Accellera Systems Initiative 16 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Questions?

Thanks!

2016
dccelera BVE

SYSTEMS INITIATIVE EUROPE

