
Validation of Timing Constraints on RTL
Reducing Risk and Effort on Gate-Level

Peter Limmer, Dirk Moeller,
Marcus Mueller, Clemens Roettgermann

NXP Semiconductors, Munich, Germany

1

Outline

• Introduction
– Motivational example

• Specification-centered approach
– Capturing the specification of timing constraints

• Verification of STA deliverables on RTL
– Clocks, multi-cycle exceptions

• Conclusion & Summary

© Accellera Systems Initiative 2

Introduction

• SoC designs for MCU devices w/ 2-6 Mio. cells (gate equiv.)

• Verification gap

– Gate Level Simulation (GLS) – inherently late in design cycle,
computationally expensive, hard to debug

– GLS covers only 10% of RTL regression

• Shift of responsibilities – design and verification

– earlier and on higher abstraction levels – the right time for
everything

– the appropriate approach for the right problem

© Accellera Systems Initiative 3

Motivational example
• Processor core w/ tightly-coupled

memory and bus interface
• Read data path signals

– STA: timing violated Multi-cycle
exception applied

– subsequently - GLS failed!

• BIU cycle adjust logic failed
– RTL not verified for multi-cycle

behavior

 Expensive late redesign cycle

© Accellera Systems Initiative 4

• Lessons learned:
– Multi-cycle spec. and review late in GL process is too late
– Awareness low, info capture and exchange method weak

Outline

• Introduction
– Motivational example

• Specification-centered approach
– Capturing the specification of timing constraints

• Verification of STA deliverables on RTL
– Clocks, multi-cycle exceptions

• Conclusion & Summary

© Accellera Systems Initiative 5

Specification-centered approach

© Accellera Systems Initiative 6

Specification-centered approach

© Accellera Systems Initiative 7

Specification-centered approach

© Accellera Systems Initiative 8

Capturing the specification

• Bottom-up - Constraining timing violations on GL
• Justification based on SoC design property on RTL +

common Documentation
 Reactively resolving single issues

© Accellera Systems Initiative 9

Capturing the specification

• Top-down - Deriving possible timing relaxations on RTL

• Implication from verified SoC properties/behavior

 a-priori definition of relaxation potential

© Accellera Systems Initiative 10

Verification intention

• NOT about verifying the timing on RTL …

• Verification of chain of causality on RTL
– Verify underlying SoC property

– Verify implication of a certain timing behavior

– Verify the correct functionality under these conditions

• Allow formulation of a timing constraint/exception on GL
based on verified data
– Consistent clock definition

– Correct multi-cycle path specification

© Accellera Systems Initiative 11

Outline

• Introduction
– Motivational example

• Specification-centered approach
– Capturing the specification of timing constraints

• Verification of STA deliverables on RTL
– Clocks, multi-cycle exceptions

• Conclusion & Summary

© Accellera Systems Initiative 12

Clock definition

© Accellera Systems Initiative 13

Period and
duty cycle

Synchronicity,
phase relation

Implicit multi-
cycle relationmulticycle_2

Clock verification

• Intra-clock properties

– period, duty cycle

• Inter-clock properties

– synchronicity, phase relation

• Implicit multi-cycles

– between phase-shifted derived (synch.) clocks

 Verify via configured clock checkers in RTL regression

 Consistent clock constraints provided to STA

© Accellera Systems Initiative 14

Multi-cycle path specification
• Operation-mode dependent exceptions

• Example - Device configuration phase
– System running on slow clk … to be switched to fast clk
– Config. signals only change in this phase, stable otherwise
– Significant relaxation possible - multi-cycle fast_clk/slow_clk

 apply multi-cycle exceptions, only when verification holds:
1. 𝑀𝑠𝑙𝑜𝑤 → 𝑓𝑐𝑙𝑘 ≤ 𝑓𝑠𝑙𝑜𝑤
2. ∀𝑠 ∈ 𝐷𝑒𝑣𝑖𝑐𝑒𝐶𝑜𝑛𝑓𝑖𝑔𝑆𝑖𝑔𝑛𝑎𝑙𝑠: 𝑠 = 𝑐𝑜𝑛𝑠𝑡 ← 𝑀𝑓𝑎𝑠𝑡 or

∃𝑠 ∈ 𝐷𝑒𝑣𝑖𝑐𝑒𝐶𝑜𝑛𝑓𝑖𝑔𝑆𝑖𝑔𝑛𝑎𝑙𝑠: 𝑠 ≠ 𝑐𝑜𝑛𝑠𝑡 → 𝑀𝑠𝑙𝑜𝑤

 Verify with assertions as sim. monitors or prove formally

© Accellera Systems Initiative 15

Multi-cycle path specification

• Protocol-driven exceptions in component interaction

• Example - Fast-to-Slow component communication
– Possible relaxation of data path: multi-cycle fast_clk/slow_clk

 apply multi-cycle exceptions, only when verification holds:
– Clock checks – synchronicity, etc.

– Launch check - check that data only change with rising edge of
slow clock -> stable through multi-cycle

– Capture check - check that data captured with a fast clock, but
only when aligned with the slow clock edges

© Accellera Systems Initiative 16

Verification of multi-cycle comm.

© Accellera Systems Initiative 17

property p_data_toggle; // SVA
@(posedge fast_clk)
##1 $changed(data) |-> $rose(slow_clk);

endproperty;

Outline

• Introduction
– Motivational example

• Specification-centered approach
– Capturing the specification of timing constraints

• Verification of STA deliverables on RTL
– Clocks, multi-cycle exceptions

• Conclusion & Summary

© Accellera Systems Initiative 18

Conclusion
• Established methodical work flow

– Central specification to bridge team and process boundaries
 raising awareness, increasing reliability

– Top-down definition of SoC properties on RTL with influence on
GL timing dedicated verification

• Prevention:
– Increase responsibilities of specification and RTL verification
– Avoid failures, that are difficult to deal with, when detected only

at GL

• Reducing the risk of costly debug/redesign cycles

© Accellera Systems Initiative 19

Thank you for your attention …

Questions?

© Accellera Systems Initiative 20

